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Data security is an indispensable part of non-volatile memory (NVM) systems. However, implementing data

security efficiently on NVM is challenging, since we have to guarantee the consistency of user data and

the related security metadata. Existing consistency schemes ignore the recoverability of the SGX style in-

tegrity tree (SIT) and the access correlation between metadata blocks, thereby generating unnecessary NVM

write traffic. In this article, we propose SecNVM, an efficient and write-friendly metadata crash consistency

scheme for secure NVM. SecNVM utilizes the observation that for a lazily updated SIT, the lost tree nodes

after a crash can be recovered by the corresponding child nodes in NVM. It reduces the SIT persistency

overhead through a restrained write-back metadata cache and exploits the SIT inter-layer dependency for

recovery. Next, leveraging the strong access correlation between the counter and DMAC, SecNVM improves

the efficiency of security metadata access through a novel collaborative counter-DMAC scheme. In addition,

it adopts a lightweight address tracker to reduce the cost of address tracking for fast recovery. Experiments

show that compared to the state-of-the-art schemes, SecNVM improves the performance and decreases write

traffic a lot, and achieves an acceptable recovery time.
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1 INTRODUCTION

Non-volatile memories (NVMs) are considered as strong contenders for DRAM, owing to their
high density, DRAM-like performance, and non-volatility [17, 22]. However, they also suffer from
limited endurance and low write performance [24, 47]. Meanwhile, due to the non-volatile prop-
erty, an attacker can easily get the contents in them by physically stealing [46]. Thus, necessary
security mechanisms and metadata must be introduced to protect user data. In addition, after a
sudden power failure, we have to recover the metadata into the latest and consistent state, namely
metadata crash consistency, as otherwise the soundness of the system will be impaired [9, 25].

A secure NVM system needs to solve the problem of data confidentiality and integrity, which are
usually implemented by counter mode encryption (CME) [23], data message authentication

code (DMAC) [41], and integrity tree verification [13]. CME is used to ensure data confidential-
ity and prevent secret data in NVM from being directly obtained by attackers. In CME, each data
cacheline has a corresponding counter, which is used to encrypt/decrypt data blocks when a data
cacheline is written to or read from NVM. DMAC is applied to prevent splicing attacks and spoofing
attacks. Each data cacheline has its unique DMAC. The integrity tree is employed to authenticate
replay attacks. The advanced integrity trees are constructed on all encryption counters in NVM,
represented by parallelizable SGX style integrity tree (SIT) [11, 40] and non-parallelizable Bon-

sai Merkle tree (BMT) [29, 39]. The encryption counters, DMACs, and integrity tree nodes are
three critical types of metadata in the secure NVM.

However, it is not easy to implement a secure NVM system, because apart from achieving data
security, it is also necessary to consider the issue of security metadata crash consistency [20, 25,
44, 49]. To improve the performance of secure NVM, volatile metadata caches are usually added in
the memory controller to buffer frequently accessed metadata blocks [13]. The counter hits in the
metadata cache can parallel the decryption process and memory read while DMAC and tree node
hits will speed up verification. But the gap between volatile metadata cache and NVM also incurs
metadata crash consistency issues in secure NVM [25, 36, 42, 45]. Specifically, when the system
suffers a sudden power failure, the cached metadata will be lost. During the recovery process, the
data and associated metadata in NVM may not match, causing decryption and verification to fail.
A straightforward way to ensure metadata crash consistency is strict persistency (SP) [25]. It
uses write-through (WT) metadata caches so that data and all related metadata are atomically
written back to NVM. However, the extra NVM write traffic and performance overhead introduced
by the SP scheme is unacceptable.

Although existing works have explored the problem of security metadata crash consistency
[20, 25, 43, 44, 49], the secure NVM system still faces the following challenges. First, the SIT con-
sistency mechanisms have high write traffic. Due to the special inter-layer dependency of SIT, it
is impossible to restore the entire tree after a crash only counting on the recovery of leaf counters
like BMT [6]. Therefore, existing works [2, 6, 16, 49] believe that SIT is an unrecoverable structure,
and its updates need to be immediately persisted to NVM, which leads to unnecessary write traffic
overhead. Second, some schemes [13, 43] store the counter and DMAC separately. They ignore the
access correlation between the counter and DMAC in secure NVM, which results in unnecessary
read, update, and persistency overhead. Third, the present metadata crash consistency mechanisms
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[20, 49] use address tracking to accelerate recovery. Although they reduce the overall overhead of
metadata persistency and system recovery time, the address tracking method itself accounts for a
large proportion of metadata write.

To overcome the preceding challenges, we propose a novel hardware solution—SecNVM. Sec-
NVM is an efficient and write-friendly crash consistency scheme for security metadata in NVM.
SecNVM first achieves the SIT crash consistency based on a key insight: when the SIT is lazily up-
dated [40], the latest nonce of any SIT node in the metadata cache matches the relevant child node
values in NVM, providing us the possibility of restoring SIT nodes after a crash. It chooses a re-
strained write-back (WB) metadata cache to buffer the lazily updated SIT nodes, thereby reducing
the NVM writes of metadata persistency. Then, it reuses the relationship between the lost nodes
and the child nodes for recovery after crashes. In addition, exploiting the strong access correlation
between the counter and DMAC blocks, SecNVM proposes a novel collaborative counter-DMAC
metadata layout to avoid unnecessary memory access and persistency, which further improves the
system performance. Moreover, utilizing the asynchronous DRAM self-refresh (ADR) feature
and the wasted NVM bandwidth, SecNVM adopts a lightweight address tracker for fast recovery
by delaying and absorbing write requests, which reduces the overhead of recovery acceleration
without influencing the system recovery time. In summary, we have the following contributions:

• Key observation and efficient crash consistency for SIT. We find that when the SIT is lazily
updated, the lost nodes after a system crash can be restored by the child nodes in NVM. Based
on this observation, we propose a relaxed persistency method and achieve fast recovery for
SIT after crashes, thereby guaranteeing the SIT crash consistency with low write traffic.
• Counter-DMAC coordinated storage to reduce memory access. According to the access cor-

relation between metadata, we rearrange the counter and DMAC in secure NVM to avoid
unnecessary memory access and persistency overhead.
• Lightweight address tracker by write absorbing. Utilizing the ADR feature and the available

NVM bandwidth, we introduce a lightweight address tracker to reduce the write traffic of
address tracking without influencing the recovery time when rebooting.
• System implementation and evaluation. We implement SecNVM on GEM5 [5], and experi-

ments show that SecNVM decreases write traffic by 48.0%/39.8%/31.4% and improves system
performance by 16.9%/12.5%/10.7% compared to ASIT [49]/STAR [16]/Phoenix [2] with ac-
ceptable recovery time.

2 BACKGROUND

2.1 Threat Model

In this article, we use an attack model similar to other state-of-the-art works [4, 6, 49] on hardware-
based secure memory. Our trusted computing base (TCB) consists of the processor and other core
parts of the operating system (e.g., security kernels). Any off-chip resource is considered unsafe,
mainly including processor-memory bus and external memory. An attacker can steal secret values
by snooping the bus, scanning NVM DIMM chips, or tampering with the data. We provide three
types of security protection: (1) encrypt user data to protect data confidentiality; (2) authenticate
user data to prevent data tampering caused by splicing attacks and spoofing attacks; and (3) use
the integrity trees to resist replay attacks.

2.2 Counter Mode Encryption

The confidentiality of memory is guaranteed by data encryption on the CPU side. CME [3, 37, 46]
is widely used in the state-of-the-art secure processors (e.g., Intel Xeon Processor E-family) due to
its low decryption latency and high security. The encryption algorithm of CME uses a counter, a
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Fig. 1. The layout of an 8-ary BMT. The update process of BMT is serial.

secret key, and the data cacheline address as its input to generate a one-time pad (OTP) [34, 51].
When a data cacheline is written to or read from memory, it is XORed with the OTP for encryption
or decryption. Each data cacheline has a unique encryption counter. The security of CME is based
on the premise that the OTP related to a data block is never reused. Therefore, each time the
same data cacheline is written back, the associated counter is incremented by one to ensure the
temporal uniqueness of the OTP. Meanwhile, data stored in different cachelines will be encrypted
by different OTPs because of the spatial uniqueness of the OTP.

2.3 Data Message Authentication Code

The encrypted data are still vulnerable to some active data tampering attacks [13]. To prevent this,
the system creates a DMAC for each data cacheline. DMAC is the cryptographic signature of a
data block. Each DMAC is generated from the encryption counter, the data address together with
the ciphertext, using a cryptographic hash function (e.g., 64-bit AES-GCM-based GMAC [27, 41]).
A DMAC is usually 64 bits long [40]. For each memory access, the system needs to recompute the
DMAC. Any malicious modification in the counter, data, or DMAC can be found by comparing the
value of the stored DMAC with the computed one.

2.4 Integrity Trees

The integrity tree is a widespread way to detect replay attacks, and the advanced integrity tree
is built on all encryption counters in NVM for better performance [29]. Typically, any update
of counters will be passed from the tree leaf to root. The root that represents the latest state of
the system is securely stored in an on-chip persistent register. A memory read access needs to
recompute the root hash and compare it against the saved one to verify integrity.

As shown in Figure 1, the non-parallelizable BMT is constructed by performing a layer-by-layer
cryptographic hash calculation on leaf counter nodes. Each hash calculation transforms a larger
child BMT node (512 bits) to a smaller hash value (64 bits) in the parent node, thereby forming an
8-ary tree. When a counter is updated, BMT will pass its latest status to the BMT root. The BMT
update is performed serially from bottom to top, as the parent node depends on the child nodes.
Thanks to its simple structure, the BMT, including all intermediate nodes and the root node, can
be reconstructed just with leaf counternodes.

Figure 2 illustrates the structure of the parallelizable SGX SIT. Unlike BMT, each SIT node stores
its own counters (also called nonces) instead of hash values [11]. An SIT node also keeps a message

authentication code (MAC) that is calculated over the nonces in it and one nonce from the
parent node using a secret hash function. (To distinguish it from DMAC, the MAC in SIT node is
referred to as HMAC in the following text.) Except for SIT root, all SIT nodes have the same layout,
which is composed of multiple nonces and a 64-bit HMAC. Whenever a leaf counter increases, the
respective nonces in the parent nodes of that path are incremented and the HMACs in these nodes
are updated. The SIT update can be performed in parallel because HMAC calculations use separate
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Fig. 2. The structure of an 8-ary SGX SIT. The update process of SIT is parallel.

nonces. The arity of an SIT varies with the size of the nonce. In the latest studies [31, 40], the arity
of SIT reaches 128. But unlike BMT, the SIT cannot restore the intermediate nodes only through
leaf counters [49].

In this work, we adopt CME and DMAC to prevent data leakage and tampering, and use SIT
to detect replay attacks in NVM. Compared to BMT, SIT can be updated and verified in parallel,
which improves the efficiency of integrity protection.

2.5 Metadata Crash Consistency in Secure NVM

The counter, DMAC, and SIT nodes are three main types of security metadata. Usually, they are
cached in an on-chip volatile metadata cache for performance [8, 13, 32]. For example, when a data
cacheline is read from NVM, we need to decrypt it using the counter. If the counter is in the cache,
we can directly get the counter and perform OTP generation and data read in parallel, whereas
when a counter is read from memory because of cache miss, we need to perform an integrity
check. If there is no metadata cache, integrity detection from the leaf to root is required. But with
a metadata cache, as long as a tree node participating in the check hits in the metadata cache, the
verification is completed since the tree nodes existing in the on-chip cache are considered as secure
nodes. Metadata caches greatly reduce the time of the integrity verification process and memory
accesses caused by security metadata.

The metadata cache accelerates the process of data encryption and verification. But it also brings
a new problem to secure NVM—that is, the metadata crash consistency [2, 6, 25, 42, 45]. Since the
metadata cache is volatile, when the system suddenly crashes, the metadata in it will be lost. Even if
the encrypted data block has been completely written back to NVM, the system cannot be restored
correctly. This is because the latest data block and a stale encryption counter in NVM cannot
be used for correctly decryption during recovery, and the stale SIT nodes will cause integrity
verification errors. More seriously, the loss of the latest SIT intermediate node may cause multiple
counter integrity verification errors in a large area of memory, and all the corresponding data will
be discarded.

SP is a naive way to achieve metadata crash consistency in secure NVM [25]. In the SP scheme,
all security metadata caches adopt the WT policy [25]. Only after the data and security metadata
are atomically persisted in NVM, a data write request can be submitted. Therefore, the data and
metadata in NVM will remain consistent after a system crash and the system can be restored
correctly. In this case, one data write will result in multiple additional NVM writes, including
writes for counter, DMAC, and SIT nodes. This solution greatly reduces system performance and
NVM lifetime (see Section 5 for details). The atomic update mentioned in this work can be ensured
by internal persistent registers, ADR technology [30], or log-based methods like existing works
[44, 49].
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Fig. 3. The update and authentication process of cache-BMT.

2.6 Counter/DMAC Crash Recovery and Cache-BMT

Counter recovery. To cut down the overhead of counter cache with WT policy, Ye et al. [44] propose
a new scheme called Osiris to guarantee counter crash consistency in encrypted NVM. Osiris uses
a stop-loss strategy. Once a counter is updated N times, it is forcibly persisted and written back
to NVM. In the common case, the counter is only updated in the cache, thus reducing the NVM
writes. After a system crash, the counter stayed in NVM may be stale, and the ECC bits co-located
with data are exploited to restore the latest counter. Each recovery for a counter requires at most N
trials of ECC-checking, and N is compromised between runtime performance and recovery time.

DMAC recovery. To solve the crash consistency problem of DMAC, Chen et al. [6] propose
the MACTree scheme according to the fixed DMAC generation formula. From the generation of
DMAC, we can know that there has a fixed relationship among DMAC, data, and counter, as de-
scribed in Section 2.3. After restoring the counter, we can put the counter, data, and address into
the DMAC generator. Then the DMAC is restored through the re-calculation.

Cache-BMT. In a secure NVM system, an attacker may tamper with data not only during normal
operation but also when the system crashes. Therefore, for the recovered security metadata after
a crash, we need to check its recovery correctness. Recent studies, such as ASIT [49], CacheTree
[6], and Phoenix [2], adopt a cache-BMT scheme to verify the restored metadata. The cache-BMT
tracks the latest state of metadata by building a small BMT on the security metadata caches. Fig-
ure 3 shows how cache-BMT works. The leaf nodes of cache-BMT are composed of blocks in the
metadata caches when the system is working normally. As shown in Figure 3(a), when a security
metadata block is updated in the metadata cache, the cache-BMT is also updated accordingly at
the same time. The latest state of blocks in the metadata caches is passed to the cache-BMT root
node R through the layer-by-layer hash calculation. The root node R is persisted in an on-chip
register. During the crash recovery process, the cache-BMT root node R’ is rebuilt on the restored
security metadata blocks like Figure 3(b). If the recalculated R’ is equal to R stored on-chip, the
security metadata is restored correctly. Otherwise, the restoration fails, indicating that an attack
has occurred.

In this work, we guarantee the crash consistency of counters and DMACs like Osiris [44] and
MACTree [6], and adopt the cache-BMT solution to verify the correctness of metadata recovery
process like CacheTree [6].

3 MOTIVATION

3.1 High Persistency Overhead for SIT

It is difficult to recover SIT nodes when they are lost after a crash due to the special inter-layer
dependency in SIT. The verification of each nonce in SIT nodes relies on the HMAC stored with
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it and its parent node. And we cannot recover SIT from the leaf counters just by recalculation.
However, if we directly adopt the SP scheme and write back all the updated SIT nodes along
with the data block each time there has a data write request, the system performance will be
seriously hindered. Our evaluation shows that for a 16-GB NVM system with SIT protection, the
SP scheme entails significant performance degradation compared to the system without metadata
crash consistency, with an average performance decline of 3.68x and additional write traffic of 8x.
There are some efforts on the correct recovery of security metadata in the NVM system, but they
do not consider the recovery scheme of SIT [25, 42, 45, 50]. ASIT [49] first realizes the recovery
of SIT in NVM through a book-keeping mechanism that will cause more than 1x additional NVM
writes. Phoenix [2] then relaxes the persistency of leaf SIT nodes, but it still has high NVM writes
for intermediate nodes and addresses. STAR [16] persists the updates of an SIT node with its child
nodes, but it causes extra ECC writes. This is critical for NVM, which typically has limited write
endurance, higher write latency (i.e., 3–8x) and energy overhead than reads [21]. These solutions
all believe that SIT is unrecoverable due to its special structure.

3.2 Inefficient Layout of Counter and DMAC

The existing counter and DMAC layouts are irrelevant. Specifically, counters are usually organized
and stored in a separate counter area. For instance, in SGX, a 56-bit counter is assigned to each
data cacheline, and 8 counters are packed into a counter cacheline block. Due to the limited write
endurance of NVM cells (e.g., 107−109 for PCM [24]), the 56-bit counters will not overflow through-
out the NVM lifespan. To mitigate counter space and overflow overheads, Yan et al. [41] proposed
the split counter design, which is another common organization for counters. But it needs to deal
with the overflow problem of minor counters, which will result in the re-encryption of the entire
page. So this article mainly considers the SGX-like 56-bit counter scheme for the general memory
encryption scheme.

The general storage method of DMAC is to store DMAC in a separate metadata area, similar
to the counter. In such situations, counter and DMAC will be accessed separately when serving
requests, which may result in unnecessary accesses. When a read request arises, we need to read
the counter to encrypt the ciphertext and read the DMAC to authenticate it, which incurs two extra
memory read requests. Similarly, when serving a write request, we need to update and persist the
counter and DMAC to NVM, respectively, which causes two extra NVM writes. In secure NVM,
there has a strong access correlation between the counter and DMAC related to the same data
block. This makes it possible for us to further improve the performance of secure NVM.

3.3 Address Tracker Overhead for Crash Recovery

Recovery time is a key factor in designing a recovery mechanism. Too long recovery time makes
the recovery scheme inefficient and the persistent data fail to be recovered eventually [4]. If the
entire memory is directly traversed and then the security metadata are restored one by one, the
recovery time will be proportional to the NVM size. To speed up crash recovery, related works [2,
49] introduce an address tracking mechanism, which tracks the addresses of updated cache blocks
and only recovers the tracked ones to accelerate recovery. To get the addresses when rebooting,
it is required to persist them into NVM, which adds lots of NVM write traffic. Evaluations shown
that the additional NVM write traffic caused by address tracking accounts for 50% of the total write
traffic caused by metadata (see Figure 11, SecNVM_basic, for details). Therefore, how to cut down
the recovery time with a smaller address tracking overhead is a key point in the crash consistency
mechanism in secure NVM.
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Fig. 4. The hardware architecture of SecNVM. Metadata cache write to NVM and address tracker (AT) write

to ADR entry and light_AT (dotted lines) only happen under certain conditions.

3.4 Our Goal

In this article, we focus on designing an efficient secure NVM system. Its main features include
the following. 1© Implement the crash consistency of SIT with low NVM write traffic. We find
that when the SIT is lazily updated, the lost nodes after a system crash can be restored by the child
nodes in NVM. So using a more relaxed persistency scheme for SIT nodes and then recovering lost
nodes after a system crash is a more friendly way to achieve SIT crash consistency. 2© Utilize the
strong access correlation between metadata to re-layout the counter and DMAC for high system
performance. The existing layouts of counter and DMAC only consider their own locality. We
aim to take advantage of the access correlation between metadata to improve the performance of
metadata access. 3©Realize fast recovery with low tracking overhead. The existing address tracking
mechanisms will cause a 64-B cacheline to be written back each time an address is tracked, but
the effective address is only 8 B, which causes a lot of bandwidth waste. To this end, we aim to
improve bandwidth utilization and reduce address tracking overhead.

4 THE DESIGN OF SECNVM

4.1 Architectural Overview

Our article proposes SecNVM, an efficient and write-friendly metadata crash consistency scheme
for security metadata in NVM. SecNVM proposes a low-overhead crash recovery mechanism (Sec-
tion 4.2) for SIT nodes. It first analyzes the SIT layout and finds that for the lazily updated SIT,
when the system crashes, the child nodes in NVM can be used to restore the missing parent node
in the metadata cache. Then, it utilizes this inherent inter-layer dependency to enable SIT crash
consistency and combines it with other metadata crash recovery mechanisms. Next, leveraging
the strong correlation between the counter and DMAC, SecNVM adopts a collaborative counter-
DMAC optimization (Section 4.3) to improve the efficiency of security metadata access. Moreover,
in Section 4.4, we propose a lightweight address tracker to reduce the tracking overhead for fast
recovery. The addresses of updated metadata blocks are tracked in ADR entries and written to the
address tracker in NVM when the ADR entries are full.

Figure 4 shows the overall hardware architecture of SecNVM. The added or modified compo-
nents relative to the traditional secure NVM are shown in yellow and green. In addition to the
CPU cache, encryption engine, write pending queue, and the NVM memory, SecNVM mainly con-
sists of three parts: (1) a Restrained WB Metadata Cache that can relax the persistency of security
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metadata, thereby improving the runtime performance; (2) the unified Ctr_DMAC&SIT area that
stores collaborative counter-DMAC and SIT blocks, thereby reducing the metadata access over-
head; and (3) the Addr entry in WPQ and Light_AT in NVM to accelerate the recovery process
with low NVM write traffic. A cache_BMT is used to verify the recovered metadata nodes. Next,
we discuss these parts in detail.

4.2 Crash Consistency for SIT

4.2.1 Key Observation for Lazily Updated SIT. When the SIT adopts a lazily updated scheme
[31, 40, 49], the latest nonce of any SIT node in the metadata cache matches the corresponding
child node in NVM, providing us the possibility of restoring the SIT nodes after a crash. Since
the SIT nodes can be recovered after a power loss, there is no need to immediately write back
the updated metadata in the metadata cache, thereby reducing the overhead caused by metadata
persistency.

In the lazily updated scheme, once the data/metadata is written back to NVM from the CPU
cache/metadata cache, it is sufficient to update the corresponding SIT nodes up to the first metadata
cache hit. It does not immediately propagate updates to the root like the eager update scheme
[14], for that any on-chip node is considered secure. This also indicates that the parent node in
the metadata cache is updated only when the child node is written back to NVM. According to
the structure of SIT mentioned in Section 2.4, the latest nonce in parent node stored in metadata
cache and the child nodes persisted in NVM always satisfy the following equation:HMAC_child =
hash(nonces_child,nonce_parent ). Therefore, as long as there is no tampering with NVM, the lost
nonces in metadata cache can be restored by the child nodes stored in NVM after a crash (the
leaf counters can be recovered by ECC [44]). The HMACs in tree nodes can be recalculated after
restoring all nonces.

Based on the preceding observation, we propose the crash consistency scheme for SIT in Sec-
NVM. The main idea behind it is to minimize the overhead of SIT persistency on normal read and
write, and exploit SIT’s inter-layer dependency to achieve recovery after a system crash. The spe-
cific persistency and recovery processes of SIT are introduced in the next section. In addition, it
is assumed that the nonces and HMAC within an SIT node are always atomically written to NVM.
This can be achieved through the internal NVM registers or by providing enough backup power.
Ensuring write atomicity is beyond the scope of this work.

4.2.2 Relaxed Persistency for SIT. The SP scheme realizes the crash consistency of secure NVM
with SIT by a WT metadata cache. However, the WT mode enforces both data and corresponding
SIT nodes to be written atomically to NVM, which greatly decreases the write performance of the
system. Different from SP, SecNVM uses a restrained WB metadata cache.

Like the traditional metadata cache in secure NVM, the restrained WB metadata cache in Sec-
NVM is mainly used to cache part of the security metadata on the processor chip, thereby speed-
ing up the encryption/decryption and verification process. However, the restrained WB metadata
cache in SecNVM adopts a new cache eviction strategy. Compared with the traditional WB meta-
data cache, this solution mainly adds an additional WB setting. When a nonce value in an SIT
node in the metadata cache is updated to the multiple of N, we write this SIT node back to NVM.
And its corresponding parent node will be updated according to the construction method of the
lazily update SIT. N is named as the restrained factor in SecNVM. This special setting lays the
foundation for restoring the lost SIT node after a system crash. In other cases, the metadata cache
works in the normal WB mode, and SIT nodes in it are only written back to NVM when the SIT
nodes are replaced and evicted. The restrained cache strategy is similar to the stop-loss strategy
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Fig. 5. SIT recovery scheme based on the inter-layer dependency of lazily updated SIT and HMAC detection.

The initial value of attempt is 0.

in Osiris, but the latter is only used for encryption counters, and the recoverability of SIT has not
been considered.

By the way, the metadata cache replacement strategy used in traditional secure NVM, such as
first-in-first-out (FIFO) and least-recently-used (LRU), are all applicable to SecNVM. Our article
uses the LRU algorithm. With the restrained WB metadata cache, SecNVM aggregates several
updates for an SIT node into an NVM write instead of requiring an NVM write for each metadata
update. So, the restrained WB metadata cache greatly reduces the persistency overhead caused by
the security metadata crash consistency mechanism.

4.2.3 Recovery for SIT. The lazy update lays the recovery foundation of SIT. For the lazily up-
date SIT, the lost nonce of a dirty SIT node in metadata cache after a crash has the following
relationship with the child SIT node stored in NVM: HMACchild_NV M = hash(nonceschild_NV M ,
noncelost_cache ). So, similar to the stop-loss scheme in Osiris [44], we can bring in possible values
of the lost nonce for calculation and find the nonce that satisfies this equation. In addition, the
restrained WB metadata cache limits the number of possible values of the lost nonce. It will be
less than or equal to the value of restrained factor (N). To ensure correct recovery ordering, when
the system is initialized, SIT nodes are initialized according to zeroed counters and stored in the
continuous NVM address space in the order from top to bottom and from left to right.

Therefore, we propose an SIT recovery scheme based on SIT inter-layer dependency and HMAC
detection. Specifically, such as that in Figure 5, for each nonce to be recovered, we perform recov-
ery attempts from the old value read from NVM, adding 1 to the current value each time, and
trying up to N times. Find a nonce value that satisfies the following equation: HMACchild_NV M =

hash(nonceschild_NV M ,noncelost_cache ). Otherwise, the recovery fails due to attacks. The HMACs
in SIT nodes can be recalculated after the recovery of all nonces. And the leaf counters can be
recovered by the ECC-based scheme proposed in Osiris [44]. When the system crashes, SecNVM
recovers lost SIT nodes one by one with the inter-layer dependency and HMAC detection, starting
from the nodes in the layer near the SIT root. See Section 4.5 for the entire recovery process of
SecNVM.

4.3 Counter-DMAC Coordination

In existing secure NVM schemes, counters and DMACs are generally stored in different locations,
as shown in Figure 6(a). This separate storage approach may introduce some extra accesses of
security metadata. Take Figure 7(a) as an example. When a data block is read from NVM, its related
counter and DMAC need to be read from the counter cache and DMAC cache, respectively. When
the metadata caches are missed, two memory read requests need to be initiated to read the counter
and DMAC from NVM. In addition, when a data block is written back to NVM, two metadata cache
write requests are also required to update the contents of counter cache and DMAC cache. And
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Fig. 6. (a) Counters and DMACs stored in different cachelines in traditional secure NVM. (b) A collaborative

counter-DMAC storage scheme in SecNVM.

Fig. 7. Read, write, and metadata cache eviction operations in separate storage for counter and DMAC (a)

and in collaborative counter-DMAC storage (b).

it will cause two NVM write operations during the eviction process of metadata cache. In short,
the operations of counters are always associated with the operations of DMACs. In the separate
layout of the counter and DMAC, operations such as read and write will cause two metadata cache
accesses, or even two NVM accesses. Moreover, there may also exist some useless accesses in the
separate layout. For example, when there are fewer than four consecutive data requests, half of
the counters/DMACs in a counter/DMAC cacheline are useless accesses.

In secure NVM, a data request always results in simultaneous accesses to the corresponding
counter and DMAC. Based on this strong access correlation between counter and DMAC, we de-
sign a novel collaborative counter-DMAC storage scheme to further improve the efficiency of
metadata access. As shown in Figure 6(b), we store four counter-DMAC pairs and a 64-bit HMAC
in the same cacheline, which serves as a child node of SIT like the original counter cacheline. The
HMAC is calculated based on these four counters and a related nonce in the parent node. The
counter-DMAC storage scheme adopts 56-bit DMAC instead of 64-bit. Nevertheless, 56-bit DMAC
is also safe as described in Morphable Counters [31]. In the implementation, we merge the original
separate NVM areas for counter and DMAC into one. On-chip counter cache and DMAC cache are
also combined together.

The collaborative layout reduces counters in the SIT leaf node, which may lead to an increase
in the SIT nodes and cache miss rate. To illustrate the impact, we make an evaluation of metadata
cache hit rate for the separate storage and collaborative storage. The results are shown in Table 1.

As we expected, the hit rate of counter and DMAC for collaborative storage scheme is higher
than that for separate storage, because the former utilizes the access correlation between counter
and DMAC. Compared with the separate storage scheme, the SIT cache hit rate of the collaborative
storage scheme has increased for some benchmarks (Array Swap, B-Tree, Hash Table, Queue) and
decreased for other benchmarks (Red-Black Tree). This is because there are two factors that affect
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Table 1. Cache Hit for Collaborative Versus Separate Counter and DMAC Storage

Counter & DMAC Hit Rate (%)

Workload Array Swap B-Tree Hash Table Queue Red-Black Tree Average

Separate 87.7 93.8 87.6 96.8 87.6 90.7

Collaborative 92.7 95.3 92.5 96.8 92.4 93.9

SIT Intermediate Node Hit Rate (%)

Separate 93.9 94.3 94.5 94.0 94.9 94.3

Collaborative 94.0 94.7 94.8 94.1 88.3 93.2

Total Metadata Hit Rate (%)

Separate 88.6 93.8 88.5 96.6 88.6 91.2

Collaborative 92.9 95.3 92.8 96.6 91.8 93.9

the cache hit rate: factor 1 is the passive eviction strategy of the cache itself, and factor 2 is the
active eviction setting of restrained WB metadata proposed in Section 4.2. This active eviction
setting may cause many SIT nodes to be evicted from cache in advance, reducing the cache hit
rate.

On the one hand, compared to the separate storage scheme, the number of SIT intermediate
nodes in the collaborative storage scheme has increased, and the SIT hit rate will decrease (factor
1). But on the other hand, in the collaborative storage scheme, the leaf counters corresponding to
an SIT node in level 1 are less, and the updates and active evictions for an SIT node in level 1 are
reduced, thereby increasing the cache hit rate (factor 2). For the first four workloads, these two
factors make up for each other, and the final SIT cache hit rate slightly increases. For Red-Black
Tree that has relatively random access, the hit rate mainly depends on factor 1, so its hit rate has
dropped by 6.6%. For all metadata caches, the overall hit rate increased by an average of 2.7%. The
NVM write requests caused by passive eviction and address tracking are reduced (see Figure 11
for details).

The collaborative counter-DMAC storage greatly improves the efficiency of metadata access
caused by the counter and DMAC. Figure 7(b) shows the operations of metadata under the counter-
DMAC layout. Regardless of read requests, write requests, or metadata eviction, in the counter-
DMAC storage, the number of accesses caused by counter and DMAC is reduced by half compared
with the separate storage solution. At the same time, the collaborative counter-DMAC storage also
avoids some invalid accesses compared to separate storage.

Although we use an on-chip cache to reduce the memory accesses caused by DMAC, it is also
a cost-effective way to store the DMAC alongside data in the memory without cache. Using or
not using DMAC cache is a trade-off between on-chip cache hardware cost and NVM bandwidth
and performance overhead. For systems without DMAC cache, we can store data and DMAC in
the same memory line. Then, the latency of fetching the DMAC can be overlapped with DMAC
verification since the DMAC can be accessed from the same row buffer as data [19]. It also has the
added advantage of consistent DMAC and data update on a write [32]. However, it incurs extra
DMAC bandwidth, which is important for multi-core processors [19] and NVM with bandwidth
3 to 14x slower than DRAM [26]. For systems with DMAC cache, we can save most of DMAC
bandwidth overhead, and the latency of on-chip cache is relatively shorter than that of the row
buffer hit. The DMAC consistency can be promised by recovery through DMAC generation rules
after a crash. However, the DMAC cache will increase the on-chip hardware cost, which can be
saved for more counters or others.

The collaborative counter-DMAC storage seems to appear to overlap with ARSENAL [36]. How-
ever, they have different design goals and approaches. First, ARSENAL aims to address the high
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Fig. 8. Comparison of the lightweight address tracker and existing address trackers. (a) Existing address

tracker writes an address cacheline for each tracking. (b) Lightweight address tracker writes an address

cacheline when the reserved ADR entries are full.

overhead of atomic updates of counter, DMAC, and data, so as to support the counter/DMAC crash
consistency. The collaborative counter-DMAC storage aims to improve the access performance of
counter and DMAC during normal read and write requests. The counter/DMAC crash consistency
is efficiently guaranteed by the recovery methods mentioned in Section 2.6. Second, ARSENAL
mainly utilizes the compressibility of data and stores a counter or a DMAC or both in the redun-
dant space of the compressed data cacheline. It tries to make the secure metadata and data persist
in an atomic manner through one memory write request. But different from ARSENAL, the col-
laborative counter-DMAC storage exploits the strong access correlation between the counter and
DMAC related to the same data cacheline. It stores four counter-DMAC pairs in the same metadata
cacheline instead of the data cacheline. Third, the effectiveness of ARSENAL is related to the data
compression rate. Data with a high compression rate have low metadata persistency overhead.
It also needs the support of ECP bits [33] to ensure flag persistency, and it requires a separate
counter layout in the system to maintain the locality of counters. These are unnecessary for the
collaborative counter-DMAC storage scheme.

4.4 Lightweight Address Tracker

Address tracker. During crash recovery, due to the uncertainty of the missing security metadata,
we need to traverse the entire memory for restoration. Long recovery time will increase the MTTR
(Mean Time to Recovery), and may cause service unavailable. Anubis [49], Phoenix [2], and PSIT
[20] recommend using an address tracker to accelerate recovery. Specifically, the address tracker
persistently records the addresses of the lost metadata blocks into NVM. After a crash, the system
only needs to restore the tracked ones, thus significantly reducing recovery time.

Lightweight address tracker. In the existing address tracker, each time when security metadata
gets updated for the first time since its last read into the metadata cache, address tracking will
be performed, thereby introducing an additional memory write. To lighten the burden, we pro-
pose a lightweight address tracker in SecNVM to delay and absorb NVM writes caused by address
tracking via the ADR technology in NVM [30].

ADR is used to guarantee that the writes in the write pending queue can still be persisted into
NVM via the backup battery in case of a sudden power loss. Thus, any writes reaching the write
pending queue can be considered durable. We find in the previous address tracker that the address
cacheline would be immediately persisted to NVM whenever an address tracking occurs. As shown
in Figure 8(a), each address (8 B) will cause an entire cacheline (64 B) into NVM, resulting in a lot
of waste.

Thus, we adopt a lightweight address tracker and reserve some entries (default is 1) in the write
pending queue to absorb address write requests. The 1 entry is special to the address tracker and
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Fig. 9. Integrity trees in SecNVM. Take the 2-ary SIT and 2-ary cache-BMT as an example.

will not be persisted to NVM until they are full. The replacement of them adopts the LRU strategy.
As shown in Figure 8(b), the lightweight address tracker can merge more than eight NVM writes
for address cachelines into one with the ADR entry, which greatly reduces the overhead of address
tracker. This is because an ADR entry can hold eight addresses, and some addresses in a entry may
be invalid and replaced before the write request of this entry is triggered.

Meanwhile, for the sake of efficiency, we maintain a bitmap in the cache to indicate whether
the entry of address tracker is free or not. We can easily get a free position to store the tracked
address. In addition, thanks to the bitmap, when a dirty block gets evicted, we will not incur an
extra write to invalidate the entry in the address tracker. On the contrary, we just need to mark
this invalid state in the bitmap. In the case of power failure, the bitmap in the cache will be lost
and we may try to restore some fresh metadata, but this does not matter since the correctness of
the system will not be influenced.

4.5 Recovery Process of SecNVM

Recovery correctness guarantee. Similar to ASIT [49] and CacheTree [6], among others, SecNVM
uses the cache-BMT scheme described in Section 2.6 to ensure the correctness of recovery. As
shown in Figure 9, there are two integrity trees in the system: one is the SIT built on the entire
NVM, and the other is a cache-BMT built on the dirty node in the metadata cache. For simplicity,
we use a 2-ary SIT. The processing of other sizes-ary SIT is similar to it. Meanwhile, to prevent
malicious tampering with the address tracker, we add the addresses to the HMAC area in cache-
BMT leaf nodes. Since the HMAC in SIT nodes can be recalculated after the recovery of nonces,
we do not include the HMAC when protecting the updated node by cache-BMT.

Recovery process of SecNVM. The recovery of SecNVM is divided into four steps.
1© Read the addresses in the lightweight address tracker in NVM, and find the metadata blocks

needed to be restored. Sort the addresses so that SecNVM starts to recover from nodes located in
the layer near the SIT root.

2© For an SIT intermediate node, recover the nonces separately through the inter-layer depen-
dency and HMAC detection, and recalculate the HMAC. Specifically, the recording nodes and
corresponding child nodes are read into the metadata cache. For each nonce to be recovered,
we perform recovery attempts from the old value, adding 1 to the current value each time, and
trying up to N times. Find a nonce value that satisfies the following equation: HMAC_child =
hash(nonces_child,nonce_recovery), as otherwise the recovery fails. After all nonces in a node are
recovered, the HMAC in this SIT node is recalculated.

3© For a leaf counter-DMAC node, recover the counters, DMACs, and HMAC. Each counter is
restored through the ECC-based scheme proposed in Osiris [44], and each DMAC is recalculated
and restored through its generation formula like CacheTree [6]. After the four counters in the node
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are restored, the HMAC in this leaf node is recalculated on the counters and the relative nonce in
the parent node.

4© Recalculate cache-BMT root, and perform an integrity check on all restored metadata blocks.
The cache-BMT is reconstructed by the restored SIT nodes (including leaf counter_DMAC nodes)
and node addresses after all lost nodes are recovered. If the calculated cache-BMT root is equal to
the cache-BMT root stored in the on-chip persistent register, the recovery is successful. Otherwise,
it means that a malicious attack occurred during the crash and the recovery failed. The pseudo-
code of the recovery process is shown in Algorithm 1.

5 EVALUATION

5.1 Methodology

We use GEM5 [5], a cycle-level simulator, to evaluate the performance of SecNVM. The configura-
tion of the target system is given in Table 2, which is similar to related works [12, 20, 25, 44, 49].
We model PCM technologies with 16-GB capacity and read/write latency of 60 ns/150 ns [18, 19].
All caches in the system adopt the LRU replacement policy. We adopt four 128-bit AES engines
on-chip. For a 512-bit data block, the cycle required for encryption, DMAC generation, or HMAC
computation is 40 processor cycles by default. The SIT cache in our implementation is 256 KB with
64-B cache block. For systems that adopt separate DMAC and counter storage, we simulate two
128-KB metadata caches, whereas for SecNVM with counter-DMAC layout, we adopt a combined
256-KB cache.

Workloads. We evaluate SecNVM with the benchmarks listed in Table 3, along with their mem-
ory footprint, and the number of memory read/ write requests per 1,000 instructions (RPKI/WPKI).
The micro-benchmarks are similar to the benchmarks used in previous studies [25, 28, 42]. These
workloads consist of persistent data structures with cacheline WB instruction (e.g., clwb) and mem-
ory fence instruction (e.g., sfence) [10].

We model the following systems for evaluation:
Write back (baseline): A secure NVM without crash consistency, which employs a WB meta-

data cache without any recovery methods. It is protected by separate CME, DMAC, and an eager
updated SIT.

Strict persistency (SP): All security metadata caches adopt the WT policy. Once a data block is
written back, the corresponding metadata are updated up to root and immediately persisted to
NVM [25].

ASIT_DMAC: A variant of the advanced solution ASIT [49]. A book-keeping mechanism is used
for SIT (including leaf encryption counters). For DMAC, it uses the WB cache and restores the
DAMC like CacheTree [6].

Phoenix_DMAC: A variant of ASIT_DMAC [2]. It does not persist the modifications of leaf
counter blocks, which can be recovered via Osiris [44].

STAR: A state-of-the-art solution for SIT crash consistency [16]. It stores the modifications of
parent nodes in their child nodes. It organizes DMAC and user data in one cacheline like Synergy
[32].

CacheTree: A state-of-the-art solution for crash consistency of DMAC and the non-parallelizable
BMT [6]. The HNode cache size, levels, and hotness threshold are the same as recommended in
the work on CacheTree.

SecNVM_basic (PSIT): A variant of the PSIT [20]. It uses the restrained WB metadata cache
for all recoverable metadata. The SIT nodes are recovered by inter-layer dependency and HMAC
detection as described in Section 4.2. The counters and DMACs are restored by Osiris and the fixed
DMAC generation formula.
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ALGORITHM 1: SecNVM Recovery

1 // 1 Read lightweight AT

2 Read liдht_AT ;

3 sorted_AT = Sort liдht_AT according to address from smallest to largest;

4 // 2 Recover SIT intermediate nodes

5 for ATi in sorted_AT and ATi ∈ SIT intermediate address do

6 SITi = The corresponding SIT node stored at address ATi ;

7 for j ← 1 to j ← 8 do

8 Read child_nodej ;

9 for k ← 1 to k ← N do

10 if HMAC_childj � Hash(nonces_childj , SITi _noncej ) then

11 recovered_SITi _noncej = SITi _noncej ;

12 break;

13 else

14 SITi _noncej ++;

15 k++;

16 end if

17 end for

18 if k > N then

19 The system is unrecoverable due to attacks;

20 return;

21 end if

22 end for

23 Read parent node;

24 SITi _HMAC = Hash(SITi _nonces,parent_nonce );

25 end for

26 // 3 Recover SIT leaf Ctr_DMAC nodes

27 for ATi in sorted_AT and ATi ∈ SIT lea f Ctr_DMAC address do

28 SITi = The corresponding Ctr_DMAC node stored at address ATi ;

29 for j ← 1 to j ← 4 do

30 Read Datablockj ;

31 Fix Counter j using Osiris[44];

32 Recovered_DMACj = hash(key,Counter j ,Datablockj ) [6]

33 end for

34 Read parent node;

35 SITi _HMAC = Hash(SITi _counters,parent_nonce );

36 end for

37 // 4 Verify integrity for recovered metadata nodes

38 Rebuild cache-BMT on recovered SIT nodes like CacheTree [6];

39 if rebuild cache-BMT root == cache-BMT root stored on-chip then

40 The system is successfully recovered to the newest;

41 else

42 The system is unrecoverable due to attacks;

43 end if

SecNVM_CtrD: Our SecNVM_Basic design works with the collaborative counter-DMAC opti-
mization (Section 4.3).

SecNVM: Our solution for metadata crash consistency problem in secure NVM. Our design with
all the optimizations discussed earlier (Sections 4.2, 4.3, and 4.4). On the basis of PSIT_DMAC, it
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Table 2. System Configurations

Processor
CPU Out-of-order, X86-64, 1 GHz
L1 Cache Private, 2 cycles, 32 KB, 2-way, 64-B block
L2 Cache Private, 20 cycles, 512 KB, 8-way, 64-B block
L3 Cache Shared, 32 cycles, 8 MB, 64-way, 64-B block

DDR-Based PCM Main Memory
Capacity 16-GB PCM
Latency Latency 60-ns read, 150-ns write [18]

Organization
2 ranks/channel, 8 banks/rank, 1-KB row buffer,
Open Adaptive page policy, RoRaBaChCo address mapping

DDR Timing
tRCD 55ns, tXAW 50ns, tBURST 5 ns, tWR 150 ns, tRFC 5 ns,
tCL 12.5 ns, 64-bit bus width, 1,200-MHz clock [4, 18]

Address Tracker 32 KB
Security Parameters

En/decryption, MAC Latency 40 processor cycles [12, 49]
Counter Cache 128 KB
DMAC Cache 128 KB
Counter-DMAC Cache in SecNVM 256 KB
SIT Cache 256 KB

Table 3. Evaluated Workloads

Workload Description Memory Footprint RPKI WPKI
Array Swap Swap random items in an array 1,006 MB 9.93 9.73
B-Tree Insert/delete nodes in a B-tree 352 MB 4.77 4.66
Hash Table Insert/delete entries in a hash table 1,922 MB 8.64 8.45
Queue Insert/delete entries in a queue 2,517 MB 5.17 5.12
Red-Black Tree Insert/delete nodes in a Red-Black Tree 870 MB 6.10 5.70

adds the collaborative counter-DMAC optimization and uses the lightweight address tracker to
further reduce the write and performance overhead.

To ensure fairness, we use the restrained factor N = 8 for all schemes with restrained metadata
caches unless explicitly mentioned. The average is the arithmetic mean of all workloads results.

5.2 NVM Write Traffic

Figure 10 compares the NVM write traffic incurred by different designs over the baseline system.
Compared with the baseline, the SP scheme increases the write traffic by 8x on average, whereas
the SecNVM_basic, SecNVM_CtrD, and SecNVM only increase 0.38, 0.22, and 0.04 times. Com-
pared with the state-of-the-art works for SIT, SIT_DMAC, STAR, and Phoenix_DMAC, SecNVM
reduces the total NVM traffic by 48.0%, 39.8%, and 31.4%, respectively. For the SP scheme, in our
simulation, a 16-GB NVM requires one leaf counter block, eight internal path SIT blocks, and one
DMAC block to be persisted on every data WB. This results in high NVM write traffic. Although
ASIT_DMAC reduces some NVM write traffic caused by metadata through a lazily updated SIT
and the DMAC WB cache, each data write will still result in an SIT shadow table write. In addition,
it has some DMAC address writes for fast recovery. Phoenix_DMAC relaxes the persistency of
leaf SIT nodes, but it still needs to persist every modification of SIT intermediate nodes. Moreover,
each time a DMAC or SIT node is updated in cache for the first time, an NVM write caused by
address tracking will be introduced in Phoenix_DMAC. STAR persists the modifications of SIT
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Fig. 10. NVM write traffic for different systems. Results are normalized to baseline.

parent node in its child nodes (modifications of leaf counters are stored in DMAC) and therefore
eliminates the persistency write requests for SIT. It has no write requests for DMAC and DMAC
address persistency, since it places the DMAC in the space usually reserved for ECC like Synergy
[32]. This allows the DMAC to be fetched to the processor without requiring separate memory
access. However, in this way, every data write request will be accompanied by an extra ECC write
request, which cannot be ignored [6, 32]. In other schemes, ECC is stored in the same cacheline as
the data, and there is no additional ECC write request.

SecNVM adopts the restrained WB metadata caches, which greatly reduces the NVM write traf-
fic caused by both the leaf and intermediate nodes. It optimizes the write traffic of address tracking
through the light_AT scheme and collaborative counter-DMAC optimization. These are very im-
portant optimizations, especially for workloads with random memory writes. For example, for
hash table and array swap, the write operations are random, resulting in a large number of DMAC
and SIT address tracks in Phoenix_DMAC and SecNVM_basic, making their write traffic closer
to STAR, which has an extra ECC write for each data write request, whereas the address tracking
overhead of SecNVM is very low due to the light_AT scheme, regardless of the workload. However,
the advantage of SecNVM compared to CacheTree is not obvious in write traffic. This is because
CacheTree does not perform address tracking to speed up recovery, and there is no persistency of
BMT intermediate nodes. But, it has two NVM writes of two hash values when a hot BMT node
is replaced from the hot tree. Compared to the baseline system, our scheme still has some extra
NVM writes, especially in SecNVM_basic. We will analyze the metadata write traffic in detail in
the next section.

5.3 Analysis of Metadata Write

Figure 11 demonstrates the metadata write traffic of different designs. The results have been nor-
malized to the data write traffic. This experiment compares the composition of the metadata writes
in different SecNVM systems. Overall, compared to SecNVM_basic, SecNVM_CtrD and SecNVM
have reduced metadata write traffic by 30.2% and 61.4%, respectively. We have the following ob-
servations from Figure 11.

First, for three different designs, the metadata write traffic caused by the restrained WB caches
(stop-loss scheme) in the counter and SIT recovery mechanisms, N_writes, are equal. Compared
with the existing counter crash consistency solution, Osiris [44], there have no changes in the
counter recovery methods. Over Osiris, SecNVM adds the SIT crash consistency guarantee.
However, the three SecNVM designs all use the restrained WB cache, and the recovery of SIT is
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Fig. 11. Metadata write traffic for SecNVM_basic, SecNVM_CtrD, and SecNVM. Results are normalized to

data write traffic.

built on the inter-layer dependencies. So, in these three schemes, N_writes has not changed. For
N_writes, we can reduce it by increasing restrained factor N in the WB methods like Osiris.

Second, from SecNVM_basic to SecNVM_CtrD, the introduction of the counter-DMAC storage
mechanism reduces metadata writes caused by cache eviction, Evict_writes. This is because the
counter-DMAC scheme takes advantage of the strong correlation between the counter and DMAC
blocks, avoiding some unnecessary accesses, thereby greatly reducing the replacement rate of the
metadata cache. But for the Queue, the advantage of this optimization is not reflected due to the
small working set and little evictions from the metadata cache.

Third, from SecNVM_basic to SecNVM_CtrD, the counter-DMAC storage method also reduces
the write traffic caused by address tracking, AT_writes. When the counter and the DMAC are
stored separately, each data WB will cause two different cachelines to be updated, and address
tracking needs to write two addresses to NVM. In counter-DMAC storage, only one address needs
to be written back.

Fourth, from SecNVM_CtrD to SecNVM, the use of lightweight address tracker further reduces
AT_writes. The lightweight address tracker makes full use of the ADR feature and the bandwidth
in NVM, fusing more than eight address writes into one.

5.4 System Performance

Figure 12 illustrates the performance of SecNVM compared to other schemes. We can observe
that the SP scheme greatly extends the system execution time, which is 3.68x the baseline sys-
tem that does not guarantee metadata crash consistency. ASIT_DAMC optimizes the update and
persistency of SIT, and its execution time is only 0.44x that of the SP scheme, but it is still 0.62x
higher than the baseline. Phoenix_DMAC further reduces the counter persistency overhead, and
it has a 0.50x performance overhead compared to the baseline. The reasons for the performance
degradation of ASIT_DMAC and phoenix_DMAC include the persistency of SIT, serial update of
cache-BMT, and address tracking of DMAC. Compared to the baseline, STAR has 0.53x perfor-
mance overhead, which is caused by the ECC writes and cache-BMT updates and reordering. The
SecNVM_basic system that uses the restrained WB caches for SIT blocks performs well and only
increases the execution time by 0.48x compared to the baseline system. Based on SecNVM_basic,
SecNVM_CtrD further reduces the execution time through the cooperative counter-DMAC stor-
age. The effectiveness of counter-DMAC storage is related to the working set of workloads. When
the working set is large, such as array-swap, the optimization of counter-DMAC storage is obvi-
ous. This is because as the working set increases, the contention of the metadata caches becomes
more serious, whereas the counter-DMAC storage effectively improves the hit rate of metadata
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Fig. 12. System execution time for different systems. Results are normalized to baseline.

caches. On top of SecNVM_CtrD, the SecNVM scheme uses the lightweight address tracker to de-
lay and merge the address written back, which has an average performance improvement of 4.2%
over the SecNVM_CtrD design. Compared to the state-of-the-art solutions, ASIT_DMAC, SATR,
and Phoenix_DMAC, SecNVM improves performance by 16.9%, 12.5%, and 10.7%. The performance
overhead of SecNVM is mainly caused by the serial update of the cache-BMT. For all SIT-protected
solutions, the system execution time trends are basically the same as the write traffic in Figure 10.
But for the BMT-protected solution, CacheTree, the system execution time is relatively high, al-
though it has low NVM traffic. The reason is that BMT is eagerly updated in serial but SIT is lazily
updated in parallel, and the BMT update overhead is on the critical path of the system execution.
Although the CacheTree solution proposes a hot tree design to alleviate this problem, the effec-
tiveness of the hot tree is closely related to the locality of workloads, the threshold setting of the
hot tree, and so on. In addition, it is worth mentioning that as the capacity of NVM grows larger,
the advantages of SIT over BMT will become more obvious as the tree level increases.

5.5 Recovery Time

The metadata recovery time in SecNVM mainly includes four parts: the recovery of SIT inter-
mediate nodes, leaf counters, DMACs, and the verification of cache-BMT. SecNVM realizes the
restoration of SIT intermediate nodes through inter-layer dependency and HMAC detection. The
counters are restored by the ECC-based schemes, and the DMACs are recovered through the fixed
generation formula. The recovery time of counters and SIT nodes is mainly related to the number
of cachelines that need to be recovered and the maximum number of attempts (N) allowed in the re-
strained WB cache mechanism. For each counter or SIT cacheline that needs to be recovered, its re-
covery time includes reading its corresponding address, reading its old value, reading its data/child
cachelines for each counter and performing recovery attempt, and recalculating the HMAC. In ad-
dition, the DMAC recovery time is related to the DMAC cache size and the DMAC recompute time.
Cache-BMT verification time is composed of hash calculations during reconstruction.

Figure 13 shows the comparison of recovery time for SecNVM compared to other schemes. The
address tracker limits the number of metadata blocks that need to be restored to the number of
dirty blocks in the metadata cache. Therefore, for gigabyte-level or even terabyte-level NVM sys-
tems, as the NVM capacity increases, the recovery time of ASIT_DMAC, STAR, Phoenix_DMAC,
and SecNVM will not get longer. However, as the capacity of NVM increases, CacheTree requires
longer and longer recovery times, even several hours, because it needs to traverse the entire mem-
ory for recovery. Like ASIT_DMAC, STAR, and Phoenix_DMAC, the recovery time of SecNVM
is limited by the metadata cache size. Figure 14 shows the comparison of recovery time for these
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Fig. 13. Recovery time for different systems under

different NVM sizes.

Fig. 14. Recovery time for different systems under

different metadata cache sizes.

systems under different metadata cache sizes. The sizes of the counter, DMAC, and SIT cache
are configured according to the ratio of 1:1:2. No matter what kind of system, the recovery time
increases as the size of the metadata cache increases. This is because the metadata cache size deter-
mines the number of metadata nodes that need to be recovered. It is impractical to create a large
metadata cache within the memory controller due to the chip area and lookup latency [11, 15]. So
the recovery time will not be too long.

For a 4-MB metadata cache, ASIT_DMAC, STAR, and Phoenix_DMAC need 0.03, 0.02, and 0.81
seconds, respectively, to recover the stale security metadata, whereas SecNVM needs 0.16 seconds.
The DMAC recovery time in ASIT_DMAC, Phoenix_DMAC, and SecNVM are the same since both
of them restore the DMACs through the DMAC generation formula. The difference in recovery
time between them mainly depends on the recovery of SIT nodes. In SecNVM, multiple recov-
ery attempts are required for the restoration of an SIT node (both leaf and intermediate nodes).
Phoenix_DMAC only needs to do recovery attempts for leaf nodes. However, ASIT_DMAC only
needs to read the old and the new values of the lost SIT node and concatenate these two values
for recovery. As for STAR, it needs not recovery DMAC since it persists DMAC with data. But
it needs more NVM reads to recovery SIT nodes compared to ASIT_DMAC. Although SecNVM
needs about 5.3x, 8.4x, and 2.0x recovery time than ASIT_DMAC, STAR, and Phoenix_DMAC to
recover a sufficiently big (4-MB) cache for the security metadata, SecNVM also requires less than
0.2 seconds. Relative to the reduction in write overhead, the recovery time cost of SecNVM is
worthy. Like Osiris, SecNVM can accelerate recovery attempts by adding AES engines. Moreover,
since the systems need 10 to 100 seconds to execute a self-test after system crashes [1, 16], the 0.2
seconds for recovering security metadata in SecNVM is negligible in real-world systems.

5.6 Sensitivity to ADR WPQ Entry

The number of ADR WPQ used for lightweight address tracking (light_AT) mainly depends on
the trade-off between performance and WPQ entry hardware overhead. The more entries used
for light_AT, the lower the overhead of address tracking. To select the appropriate number of
WPQ entries, we added a sensitivity test to the number of WPQ entries. The results are shown
in Figure 15. Compared to no ADR address entry, light_AT with 1 ADR entry reduces the system
execution time by 4.22%, whereas the light_AT with 16 ADR entries reduces the system execution
time by 4.26% on average. For NVM write requests caused by address tracking, light_AT with
1 ADR entry and 16 entries reduce 87.7% and 88.8%, respectively, which is important for NVM
systems with expensive writes. Accordingly, we can observe that with 1 ADR entry, the write
requests for address tracking have been reduced a lot, and it is of little significance to adopt more
ADR entries. This is because the ADR entries optimize address writing from two aspects. One is
that an ADR entry can store eight addresses, so 1 ADR entry write can reduce the eight writes
caused by eight addresses in the original solution to one write. The second is that the ADR entry
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Fig. 15. System execution time (a) and NVM write traffic caused by address tracking (b) under different

numbers of ADR address entries. Results are normalized to the system without ADR address entry.

can merge and absorb some address writes. Before an entry is written back, some addresses in
this entry may be invalid and replaced due to the fact that related metadata blocks are replaced
in metadata caches. Increasing the number of ADR entries can enhance the effect of the second
aspect. However, due to the high hit rates of metadata caches (Table 1), the influence of the second
aspect is not obvious. So, considering the hardware cost, we choose 1 ADR entry as the default.

5.7 Hardware Overhead Analysis

Like the regular secure NVM, we use 512-KB volatile metadata caches, a 64-B persistent SIT root
register, and an encryption engine for memory encryption and integrity verification in the on-chip
memory controller. And in NVM, we adopt a nearly 300-MB security metadata area for SIT nodes
storage and 16 GB for data storage. These components are necessary to implement a secure NVM
system, and our configuration for these components is similar to prior hardware secure memory
designs without metadata crash consistency. Additionally, to achieve metadata crash consistency,
SecNVM introduces some additional hardware overhead. It includes a 64-B on-chip persistent reg-
ister for storing cache-BMT root, 1 ADR entries for delaying and absorbing address write requests,
16-B metadata cache area for lightweight address bitmaps that can speed up address searching and
delete, and 32-KB NVM area for persisting addresses.

6 RELATED WORK

In this section, we review the relevant works in secure NVM with crash consistency. Counter-
atomicity [25] first raises the issue of security metadata crash consistency. Later, ACME [35],
STASH [38], Triad-NVM [4], Osiris [44, 45], CC-NVM [43], AGIT [49], EasyPM [48], and Ca-
cheTree [6] show interest in the crash consistency of counters, DMACS, and BMT nodes. Unlike
these solutions, SecNVM aims at the SIT crash consistency, and adopts the Osiris and CacheTree
schemes for counter and DMAC recovery. Although the restrained metadata cache strategy in
SecNVM is similar to Osiris’ stop-loss scheme, Osiris does not discover the special inter-layer
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relationship and recoverability of SIT. It is not feasible to directly apply these solutions to SIT due
to its special structure.

ASIT [49] first realizes the recovery of SIT in NVM. But ASIT concerns more with the system
recovery time. It employs a book-keeping mechanism that persists the updated tree nodes imme-
diately to achieve the recovery of SIT after a crash, which has a great impact on normal reading
and writing of the system. Phoenix [2] further reduces the persistency overhead of leaf encryption
counter nodes through the stop-loss scheme proposed in Osiris. SecNVM and Phoenix use the same
method to ensure the crash consistency of SIT leaf nodes, but unlike Phoenix, SecNVM discovers
the special inter-layer dependency of SIT and reduces the write traffic of SIT intermediate nodes.
STAR [16] exploits the unused space in HMAC in one node to store the LSBs of the correspond-
ing nonce in the parent node, thereby avoiding the additional overhead caused by the SIT crash
consistency mechanism. Unlike these schemes that believe SIT is an unrecovered tree, SecNVM
finds that SIT nodes can lose their latest state during normal operations and be restored through
its inter-layer relationship. In addition, SecNVM proposes the collaborative counter-DMAC and
lightweight address tracker schemes, and these two optimizations can be combined with existing
works.

There are also some optimizations for security metadata access performance. For example, a
device that realizes expedited memory protection via cache partitioning and/or data organization
is proposed by Chhabra et al. [7]. With the DMAC and counter stored in the same cacheline, it ac-
celerate memory protection operations. Lee et al. [19] adopted a shared LLC for data and security
metadata to reduce the memory traffic caused by security metadata. In addition, a DM coupling
scheme in which data and DMAC are co-located and a DC priority scheme in which data and
counter blocks have a higher priority are also proposed, which further improves the overall per-
formance. Unlike these works, SecNVM pays more attention to the crash consistency problems of
security metadata, which is not considered in these solutions.

7 CONCLUSION

This article proposes an efficient and write-friendly solution—SecNVM—to achieve metadata crash
consistency in secure NVM with high performance and fast recovery. It employs a restrained WB
metadata cache and a lazily updated SIT, which reduces the write traffic caused by security meta-
data persistency and improves the system performance on normal operations. After system crash,
the inter-layer dependency of SIT is utilized for the recovery of lost tree nodes. Then a collabora-
tive counter-DMAC scheme is introduced to avoid unnecessary accesses and persistency overhead
of security metadata. In addition, a lightweight address tracker is employed to reduce the tracking
overhead. These schemes are implemented with slight modifications only on the hardware layer,
which are transparent for programmers and applications. Experimental results demonstrate that
compared with the state-of-the-art work, SecNVM significantly reduces the write overhead and
improves system performance.
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