
Journal of Systems Architecture 125 (2022) 102462

A
1

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

A write-optimal and concurrent persistent dynamic hashing with radix tree
assistance
Xiaomin Zou a, Fang Wang a,b,∗, Dan Feng a, Junhao Zhu c, Renzhi Xiao a, Nan Su d

a Wuhan National Laboratory for Optoelectronics, Key Laboratory of Information Storage System, Engineering Research Center of Data Storage Systems and
Technology (School of Computer Science & Technology, Huazhong University of Science & Technology), Ministry of Education of China, China
b Shenzhen Huazhong University of Science and Technology Research Institute, China
c National University of Defense Technology, China
d Shandong Massive Information Technology Research Institute, State Key Laboratory of High-end Server & Storage Technology, China

A R T I C L E I N F O

Keywords:
Hybrid DRAM-NVM memory
Dynamic hashing
Data consistency
Optimistic concurrency control

A B S T R A C T

Non-volatile memory (NVM) is expected to coexist with DRAM as a hybrid memory to fully exploit DRAM’s
low read–write latency and NVM’s high density, persistence, and low standby power. However, existing
persistent hashing schemes cannot efficiently reap the hybrid-memory benefits, and suffer from a significant
performance penalty due to consistency guarantee. In this paper, we present an optimized extendible hashing
variant for hybrid DRAM-NVM memory, named OP-HMEH. In our design, hash buckets are persisted in NVM
while the directory is placed in DRAM for faster access. We also keep a radix-tree-structured directory in
NVM to instantaneously recover the directory in DRAM after system crashes. To reduce consistency guarantee
overhead, OP-HMEH designs a cross-KV mechanism to reorganize items which can avoid the use of expensive
persist barriers in most cases. Meanwhile, we employ low-overhead structural modification operations schemes
to further improve system performance. For concurrency control, the original version uses two lock-based
techniques. We then propose an optimistic concurrency strategy that exploits lightweight locking to protect
segments and enables lock-free search/operations of directories by leveraging atomic instructions. On real
Intel Optane DCPMM, experimental results with YCSB workloads show that our OP-HMEH outperforms the
state-of-the-art NVM-based hashing structures by up to 2.18×. The optimized HMEH obtains higher insert
performance than the original HMEH.
1. Introduction

The past few years have witnessed the rapid development of emerg-
ing non-volatile memory (NVM) devices, such as 3D XPoint [1], phase-
change memory (PCM) [2], and spin-transfer torque memory (STTRAM)
[3]. Recently, the release of the first commercial NVM product, Intel
Optane DC persistent memory, brings NVM to reality [4]. The byte-
addressable NVMs are promising candidates for replacing DRAM with
disk-like durability and near-DRAM access performance. However,
current NVM technologies still suffer asymmetric read–write latencies
and limited write endurance [5]. It is a commonly held belief that NVM
will not replace DRAM overnight and will instead coexist with DRAM
for a foreseeable future [5–8].

The changes in memory features and architectures have rendered
legacy indexing structures inefficient because they ignore data con-
sistency and do not fully exploit the byte-addressable properties of
NVM. Therefore, building high-performance indexing structures that
are efficiently adapted to NVM is critical for future storage systems.

∗ Corresponding author.
E-mail address: wangfang@hust.edu.cn (F. Wang).

A large body of prior research has been done to improve tree-based
indexing structures for the systems equipped with NVM [6,7,9–12].
Hashing indexing structures are also widely used in applications due
to their constant time complexity, i.e., O (1), for point accesses, which
are superior to tree-based structures. Recently, several hashing variants
for NVM-oriented memory have been proposed, such as PFHT [13],
path hashing [14], level hashing [15,16], CCEH [17], Dash [18], and
HDNH [19].

However, despite various optimization on the properties of NVM,
we demonstrate that existing hashing schemes for NVM all have two
shortcomings. First, their designs of hashing structures are imperfect
for NVM. According to the way of resizing, hash-based structures are
divided into static hashing structures and dynamic hashing structures.
Each of them has its own merits. Most previous persistent hashing
schemes focus on static hashing structures since they can provide fast
lookup responses [13–15]. However, their resizing operations are more
vailable online 19 March 2022
383-7621/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.sysarc.2022.102462
Received 29 August 2021; Received in revised form 23 January 2022; Accepted 8 M
arch 2022

http://www.elsevier.com/locate/sysarc
http://www.elsevier.com/locate/sysarc
mailto:wangfang@hust.edu.cn
https://doi.org/10.1016/j.sysarc.2022.102462
https://doi.org/10.1016/j.sysarc.2022.102462
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2022.102462&domain=pdf


Journal of Systems Architecture 125 (2022) 102462X. Zou et al.

-

d
c
d
n
e
t
d
L
d

time-consuming since they need to create a bigger or smaller hash
table, typically twice or half as large, and rehash all items in the old
table into the new table. Meanwhile, during the resizing, all foreground
user query requests will be blocked. Considering that NVM has higher
latency and lower endurance, this resizing way drastically degrades
application performance and even exacerbates the wear-out problems.

Unlike static hashing structures, dynamic hashing structures [20,21]
can grow and shrink according to the data size which are widely
applied in file systems and database systems [22–24]. Extendible hash-
ing is a typical dynamic hashing that induces a directory to organize
buckets, thus it can dynamically add or delete buckets rather than
resizing the whole hash table. Dash [18] and CCEH [17] both employ
extendible hashing structures to implement cost-efficient resizing. How-
ever, the use of the directory leads to a disadvantage that every request
requires at least two accesses to index the data. This extra directory
access exposes the high read latency of NVM in the critical path, which
prolongs the execution time of each operation.

Second, recent consistency guarantee mechanisms are costly that
greatly affect the system performance. Since NVM is directly accessed
through a memory bus, partial or reordering write to NVM might lead
to inconsistent issues after the system failures. To guarantee crash
consistency, most existing work employs persist barriers (memory fence
and cache line flush instructions) to flush data from volatile CPU caches
to NVM in the desired order. However, these persist barriers are proved
to cause performance degradation [7,12]. Our evaluation shows that
the throughput of several NVM-optimized hashing schemes increases
by 20.3%–29.1% without persistent barriers.

In this paper, we present HMEH, a write-optimal extendible hashing
that fully leverages the complementary advantages of hybrid DRAM-
NVM memory and significantly mitigates the overhead of data consis-
tency. HMEH stores key–value items in NVM for directly persisting and
places the flat-structured directory in DRAM to cover the shortage of
NVM-based extendible hashing. However, the flat-structured directory
will be lost after system failures or normal shutdowns. To resolve this
problem, HMEH maintains a radix-tree-structured directory in NVM.
Since updates of the radix tree do not incur extra NVM writes and are
easy to guarantee consistency, it only incurs negligible overhead but
realizes a fast recovery.

To reduce the overhead of consistency guarantee, HMEH lever-
ages a cross-KV mechanism to avoid using expensive persist barriers.
Specifically, it rearranges the key and value of the item into multiple
failure-atomic 8-byte slices and writes these slices back to NVM by
natural evictions. After system crashes, we can check whether the key–
value item is correctly persisted to NVM by the hash value of the
key. Furthermore, HMEH exploits low-overhead structure modification
operations to improve performance. First, when doubling the flat-
structured directory, we employ a lazy-migrating doubling scheme that
amortizes the migration of directory entries to future queries, thus
reducing the blocking time caused by directory doubling. Second, to
reduce the persistence overhead of segment splits, we leverage the
delayed flush method which only persists the split segment when a new
node of the radix-tree-structured directory is created.

Since modern processors support an increasing number of threads,
we must make our HMEH scalable to fully utilize the hardware re-
sources. To control concurrent queries in a thread-safe way, the original
HMEH exploits two lock-based schemes. However, the lock mainte-
nance overhead grows with the increase of threads and hurts the
scalability. To alleviate this problem, we leverage an optimistic concur-
rency control mechanism to optimize concurrent HMEH. Specifically,
insert operations proceed with a lightweight locking that is imple-
mented by a version number and atomic primitives. Search operations
can be performed without holding any locks by using the version
number to detect conflicts. Furthermore, we exploit atomic primitives
and a lazy-migrating mechanism to implement lock-free FS-directory
doubling.
2

In summary, the main contributions of this paper are: i
Fig. 1. Extendible hashing structure.

• We design our HMEH consisting of a flat-structured directory in
DRAM and hash table in NVM to fully exploit the advantages
of hybrid memory. To rebuild the flat-structured directory upon
recovery, we also keep a radix-tree-structured directory in NVM
to record its updates.

• We propose a cross-KV mechanism that reorganizes the stor-
age form of key–value items as multiple 8-byte atomic cross-KV
blocks. So that we can use the hash key to verify whether the item
is completely written to NVM, ensuring crash consistency without
persist barriers.

• We propose two low-overhead structure modification operations,
i.e., we employ a lazy-migrating scheme to decrease the execution
time of directory doubling, and propose delayed flush to mitigate
the persistence overhead when splitting segments.

• We implement HMEH and optimize the concurrent HMEH (i.e., OP
HMEH). We use atomic primitives and lightweight synchroniza-
tion techniques to coordinate accesses of concurrent threads,
whose correctness is ensured with low overhead. Using Intel Op-
tane DCPMM, our experimental results show that OP-HMEH ob-
tains up to 1.46×/1.73×/2.18× speedup than the state-of-the-art
work, HDNH/Dash/CCEH under YCSB workloads.

The rest of this paper is organized as follows. Section 2 describes the
background and related work. Section 3 presents the detailed designs
of HMEH. In Section 4, we introduce the optimistic concurrency of
optimized HMEH and describe the implementation details. The perfor-
mance evaluation is shown in Section 5. Finally, Section 6 concludes
this paper.

2. Background and motivation

2.1. Extendible hashing

Extendible hashing is a dynamic hashing technique optimized for
time-sensitive applications, which can dynamically allocate and deal-
locate hash buckets on demand [20]. Fig. 1 shows the structure of
extendible hashing, it uses a resizable array (called the directory) to
index multiple buckets, and each bucket stores a fixed number of items.

The directory has 2𝐺𝐷 entries, where GD is the global depth of the
irectory and determines the maximum number of buckets. A suffix
orresponding to the trailing GD bits of the hash key is used to index the
irectory. To improve memory efficiency, the number of buckets does
ot need to be the same as the number of directory entries. Therefore,
ach bucket also keeps a local depth (LD) to indicate the number of
he common bits in the bucket. When a bucket is only pointed by one
irectory entry, LD equals GD. If n directory entries point to a bucket,
D = GD-log2n. Taking an example in Fig. 1, bucket1 is pointed by two
irectory entries and GD is 2, thus the LD of bucket1 is 1.

When a bucket has no empty slots, extendible hashing will split it

nto two new buckets and copy the items from the old bucket to the new



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
ones. As Fig. 1 illustrates, to insert a new item into bucket1, two new
buckets should be created to replace bucket1. Since the LD of bucket1 is
smaller than the GD, it directly modifies directory entry00/10 to point
to the new split buckets. After finishing the split, we increment the LD
of the new buckets to 2. However, if bucket3, whose LD is equal to GD
is full, we first need to double the directory to store the pointer of the
new buckets, including creating a double-sized directory and migrating
all entries in the old directory to the new one. Then, we update the
directory pointer to point to the new one and increase the GD by one.
Finally, we split bucket3 as what we do to bucket1.

Compared to static hashing schemes, extendible hashing is more
flexible since it reuses most buckets and only splits one bucket for each
expansion. Therefore, when running multiple threads, its resizing will
not block other concurrent accesses for a long time, which significantly
improves the scalability. However, it has shortness that searching an
item requires at least two accesses due to the introduction of an indirect
directory level.

2.2. Hashing index structure in NVM

The hash-based structures support constant-complexity point query
operations, widely used in key–value stores [25–27] and main mem-
ory databases [28–30]. Traditional hashing schemes are designed for
DRAM or disk that mainly focus on dealing with hash collision and
improving indexing performance. They do not consider the properties
of NVM, thus becoming inefficient in NVM. Recently, several hashing-
based structures have been proposed to efficiently adapt to NVM [13–
15,17,18].

PFHT [13] is a PCM-friendly cuckoo hashing variant that only
allows one cuckoo displacement to avoid cascading NVM writes. To
improve the load factor, PFHT designs a stash to store conflicting
key–value items. However, the stash is a linked-list structure which
increases the search latency. Path hashing [14] is a write-friendly
hashing for NVM that logically organizes storage cells as an inverted
binary tree. The leaf nodes are addressable by hash functions, and other
nodes in the same path are used to store the conflicting items. PFHT
and path hashing are devoted to reducing NVM writes but at cost of
decreasing search performance, thus they cannot provide a constant-
level lookup. More importantly, neither of them takes data consistency
issues into account.

Unlike PFHT and path hashing, level hashing achieves constant
lookup time and provides a log-free consistency guarantee [15]. It is a
sharing two-level hash table where the top level is addressable for items
and the bottom level is used to deal with hash collisions. When level
hashing needs to resize, the items in the old bottom level are rehashed
to a new 4× larger hash table and the old top level is reused as the new
bottom level. While the in-place resizing of level hashing only needs to
rehash 1/3 table instead of the entire table. However, the rehashing
overhead of level hashing is similar to other hashing schemes [17].

HDNH [19] stores a two-level hashing structure in NVM whose
rehashing operations are performed by background threads without
blocking concurrent queries. Since Optane DCPMM exhibits 3x longer
read latency than DRAM, HDNH puts many efforts to improving read
performance. First, it places the index metadata (i.e., fingerprints) in
DRAM to reduce unnecessary NVM accesses. Second, HDNH keeps a
hot table in DRAM to speed up the search for hot items. However,
these structures also cause extra metadata maintenance overhead and
sacrifice write performance.

The mentioned NVM-based hashing schemes are based on static
hashing schemes. CCEH [17] and Dash [18] are variants of dynamical
hashing that can split and merge hash buckets as needed. They both
build a segment level between the directory and buckets. The bucket
of Dash is set to 256 bytes while CCEH uses 64-byte buckets. To speed
up search requests, Dash maintains a fingerprint for every item to avoid
bucket probing. For high space utilization, it designs a load balancing
3

strategy to postpone segment splits.
The main disadvantage of dynamic hashing is that every insertion
or search needs extra access to the directory. Due to the randomization
of hash functions, the accesses to the directory may incur many cache
misses, leading to a performance penalty. To measure its overhead,
we use the PAPI library [31] to test the LLC cache miss rate of the
directory in CCEH. As we increase the number of inserted items from 16
million to 256 million, the directory size of CCEH grows from 1MB to
20MB. In the meanwhile, the cache miss ratio of the directory increases,
even up to 98%. Considering that real NVM hardware has higher read
latency, the extra directory access may drastically diminish the system
performance.

2.3. Data consistency for hashing schemes in NVM

NVM Systems today must support Asynchronous DRAM Refresh
(ADR) that ensures the data is persistent on memory controller’s write
pending queue and NVM [32]. By default, the CPU caches are not
protected by ADR and are still volatile. To guarantee data consistency
between volatile CPU caches and NVM, it is necessary to ensure the
ordering of memory writes [6,9,11]. However, memory writes may be
reordered by the CPU and memory controller for better performance.
Hence, we have to use persist barriers to form ordered memory writes
as existing schemes [10,11,15], including memory fence and cache
line flush instructions (short for MFENCE and CLFLUSH). Since the
atomic write of the CPU is only 8 bytes, the updates with larger sizes
may be partially written after unexpected system failures [6,7,11,12].
Existing work exploits logging or copy-on-write (CoW) to guarantee the
atomicity of data larger than 8 bytes [9,33,34].

In the third-generation Intel Xeon Scalable Processors, ADR could
be further extended, e.g., enhanced ADR (eADR), to provide cache-
level persistence [35]. With eADR, programmers do not need to use
CLFLUSH instructions since the hardware flushes the data automat-
ically, but MFENCE instructions are still required to guarantee the
correctness of write ordering. Although eADR simplifies NVM pro-
gramming and reduces the persistence overhead, it comes at the cost
of non-standard extensions, high costs, and environment-unfriendly
batteries [36]. Therefore, we expect that NVM systems with the stan-
dard ADR support are more commonly used in the foreseeable fu-
ture. Ensuring data consistency is a fundamental requirement in NVM
systems.

In NVM-based hashing schemes, the consistency guarantee is an
essential part without which hashing structures cannot normally work
on NVM. Generally, when inserting a new key–value item into a bucket,
we first store the value and next the key. However, writes to NVM
may be reordered. Hence, we cannot ensure the item is completely
written by checking the validity of the key since the key might have
been written back while the value is not. Previous research exploits a
sequence of persist barriers to ensure data consistency [15,17,18]. For
example, they write the value first, call MFENCE, store the key, and
then call CLFLUSH. This ordering ensures that the key is not written
to NVM ahead of the value. Therefore, after a system failure, they can
identify the partially written items if the keys are not valid for the hash
bucket.

However, persist barriers are expensive and their overhead is pro-
portional to the amount of NVM writes. To quantify their cost, we
use the random integer workload to measure the average insertion
throughputs of five hashing schemes with and without persist bar-
riers (referred as w/ persist barriers and w/o persist barriers): (a)
HDNH [19], a state-of-the-art hashing scheme for hybrid DRAM-NVM
memory, (b) Dash [18], a recently proposed dynamic hashing for NVM,
(c) CCEH [17], a NVM-based extendible hashing, (d) level hashing [15],
a static hashing for NVM, (e) linear probing [37], and (f) cuckoo
hashing [38]. The details of the experimental setup are presented in
Section 5.1. As shown in Fig. 2, without persist barriers, the through-
puts of these hashing schemes are improved by 20.3% to 29.1%. These
persist barriers significantly deteriorate system performance. Therefore,

it is important to reduce the number of persist barriers.



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 2. The insertion throughputs with and without persist barriers.

2.4. Concurrency control

As modern processors are being scaled to lots of cores, Multi-
threaded concurrency is a key issue to enhance program performance.
Theoretically, the hashing structure is efficient in a concurrent envi-
ronment. Because concurrent threads generally access different buckets
of the hash table, hence, they can be running in parallel with low
interference overhead. However, concurrency control between common
operations and the resizing of hash table is difficult, since resizing
incurs many extra operations and blocks all concurrent accesses until
it is completed.

The simplest synchronization mechanism is probably locking, i.e., in
a blocking way. The ConcurrentHashMap of Java concurrency.utils
library [39] is a typical work that applies a fixed number of locks,
each of which protects a subset of the hash buckets. Level hashing [15]
uses fine-grained locks to guard each slot. Before accessing the slot, a
thread should acquire the slot lock and release it after finishing the
operation. However, during resizing, these two schemes both need to
hold all locks, thus blocking all concurrent accesses of other threads
and significantly diminishing system performance.

To reduce the heavy-weight locking overhead, several previous
work proposes optimistic concurrency mechanisms [40–42]. For ex-
ample, OLFIT [41] uses the per-node lock to serialize updates to the
same node and keeps a per-node version number which is incremented
once the node is updated. Before and after reading a node, OLFIT read
the version number and checks if they match. If the version number
is modified, OLFIT retries the lookup. Unlike conventional lock-based
techniques that always update the lock variable at the start and end of
operations, the read of optimistic concurrency mechanisms is lock-free
with version-based retry which can improve the scalability of search.

Compare-and-swap (CAS) is an atomic instruction that is widely
used in existing concurrent indexing data structures to improve scala-
bility [43–45]. The CAS contains three operands: the memory location,
the expected old data, and the new value. It first compares the expected
old data with the contained data in the memory location, if their values
are equal, the processor will atomically replace the contained data with
the new value. Otherwise, the expected old data is modified to the
contained data. However, CAS instructions cannot guarantee the atomic
update of data larger than 8 bytes [46].

3. HMEH design

3.1. Overview of HMEH

We propose HMEH, a write optimal and flexible extendible hash-
ing for hybrid DRAM-NVM memory. Fig. 3 shows the architecture
of HMEH. Similar to previous work [17,18], we apply a three-level
structure that uses a directory to index segments, and each of them
consists of multiple buckets and a stash for colliding items. We place
the flat-structured directory (FS-directory) in high-speed DRAM for fast
access and store segments in NVM for efficient persistence. DRAM-
based FS-directory offers two benefits: First, it moves the slow directory
4

Fig. 3. Architecture of HMEH.

Fig. 4. The relationship of two directories.

accesses in NVM out of the critical path which significantly speeds up
the segment indexing. Second, we do not require to guarantee its crash
consistency.

However, after a system crash or normal shutdown, the FS-directory
in volatile DRAM will be lost. To address this problem, we design a
secondary directory in NVM to rebuild the FS-directory upon recovery.
The NVM directory is organized as the radix tree structure (denoted
as RT-directory) for two reasons: (1) The radix tree is determined by
the prefix of the inserted key which coincides with segment indexes
(the MSB bits of hash keys). The height of its leaf node can effectively
indicate the local depth, which enables fast recovery. (2) The character-
istics of the radix tree can be efficiently utilized in NVM. The resizing
of the radix tree directly adds a new node without tree rebalancing
operations, which only results in an 8-byte update operation. Thus, we
can easily use persist barriers to guarantee data consistency without
logging or CoW.

For all foreground queries, the FS-directory is used to index seg-
ments, while the RT-directory is accessed upon recovery. Fig. 4 shows
the corresponding relationship between FS-directory and RT-directory.
We can leverage the depth and leaf nodes of the RT-directory to recover
the FS-directory. For high CPU cache efficiency, we set the size of the
RT-directory node as a cache line. There is a doubt whether the mainte-
nance of the RT-directory leads to high overhead. Only when segment
splits, we require to update the corresponding entries in its RT-directory
node. To further reduce the overhead, each segment stores the pointer
to the corresponding RT-directory entry so that it can quickly index
and update the RT-directory entry without traversing multiple non-leaf
nodes. As a result, the RT-directory only causes negligible overhead
but achieves an instantaneous recovery as experimental results show
in Sections Section 5.2.

3.2. Cross-KV mechanism

As described in Section 2.3, to guarantee data consistency when
inserting an item, we must use persist barriers to constraint the ordering
of key and value, which has been proved to be a major reason of per-
formance degradation. Therefore, we propose a novel cross-KV strategy
to bypass persist barriers in most situations. Its basic idea is to bind key



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 5. The storage structure of cross-KV.

and value so that the key will not be written to NVM before the value,
thereby avoiding persist barriers.

We split the key and value of an item into several pieces, and then
alternately store the key and value pieces as 8-byte combined blocks
since modern processors support 8-byte atomic write. Fig. 5 shows the
storage structure of cross-KV. Suppose the sizes of key and value are
both 8 bytes. We first divide key (value) into 4-byte key1 and key2
(value1 and value2). Next, we combine key1 and value1 (key2 and
value2) as 8-byte cross-KV blocks. In this way, we bind the key and
value together, thus we can judge whether the value is completely
written back to NVM by the integrity of the key. Specifically, if a power
loss or system crash occurs during writing an item, we fetch out the key
from cross-KVs and recalculate its hash key to check whether the same
segment and bucket can be indexed. If so, the key and value are both
valid. Otherwise, they are partially written and will be discarded.

However, there is a special case that cross-KV fails to guarantee
data consistency. That is, the partially written key are still hashed into
the same segment and bucket where the complete key is located, thus
the key cannot prove that the value is correctly persisted to NVM. To
address this problem, before inserting an item, we form all possible
partially written keys that may be produced by cross-KVs. Then we
calculate the hash values of these keys to check if they can index the
same position where the item will be stored. If one of them can, we
insert the target item by persist barriers. In practice, the probability of
this case is extremely low, so the cross-KV mechanism is still efficient.

Though HMEH leverages a unique cross-KV structure to avoid the
overhead of persist barriers in most cases, it also sacrifices a little
performance. First, when searching a key, we require to read the entire
item, unlike other hashing indexes that only need to read the key.
However, this read overhead can be ignored since we employ cacheline-
sized buckets and a single access can prefetch multiple cross-KVs in
the same item. Second, we require to check the above special case.
Fortunately, our evaluation shows the impact of calculation overhead
on performance does not exceed 1%, which is much less than the
overhead of persist barriers. For larger or variable-length items, like
previous research [15,47], we place key–value pairs outside the hash
table to reduce the resizing overhead. We store their pointers and
the short summary of the key in the hash table with the cross-KV
mechanism.

3.3. Low-overhead structural modification operations

In hashing structure, dynamic insertion and deletion might cause
structural modification operations (SMOs, e.g., segment split and di-
rectory doubling). However, SMOs have high overhead and degrade
system performance since they often incur a large number of extra data
movements. To address this problem, we optimize the two types of
SMOs individually, which are described below.

lazy-migrating FS-directory doubling. Existing extendible hashing
variants, such as CCEH [17], Dash [18], and the original HMEH [48],
exploit traditional directory doubling that includes three steps: (1)
creates a new double-sized directory, (2) iteratively migrates all the
entries in the old directory to the new one, and (3) atomically updates
the directory address to the new directory. Among them, step 2 is
the most time-consuming since it includes a large number of data
movements and blocks other concurrent operations. Different from
existing schemes that perform the migration of directory entries during
5

Fig. 6. Fs-directory doubeling.

directory doubling, we leverage a lazy-migrating doubling scheme that
amortizes the migration process to subsequent operations to reduce the
blocking time.

We slightly modify the structure of FS-directory as shown in Fig. 6.
We store two pointers: NEXT points to the newly created FS-directory
and Prior points to the old-versioned one. When doubling FS-directory,
we first allocate a new bigger directory. Then we modify Next of the
old FS-directory to point to the new one and update Prior of the new
FS-directory to point to the old one. Second, the thread atomically
changes the FS-directory pointer to point to the new FS-directory and
increments the global depth. Finally, the migration of old directory
entries is amortized over future queries. Fig. 6 shows the amortization
process: (1) if a thread accesses an empty entry, (2) it searches the
corresponding entry in the old directory by the Prior pointer. (3) Next,
it copies the old entry to the new entries.

The low-overhead Segment Split. In terms of slower NVM, segment
split not only causes many NVM writes but also needs to be performed
in a failure-atomic way. To reduce NVM writes and mitigate the SMOs
overhead, we design a segment split scheme with low persistence
overhead.

We use an example of Fig. 7 to elaborate on the process of segment
split. Since the FS-directory doubling is described above, Fig. 7 only
shows the updates of the RT-directory. Suppose we inset an item to
S1, but S1 has no empty slot and its local depth is equal to the global
depth. We first increase the size of the RT-directory. As Fig. 7 shows,
we allocate a new RT-directory node and the GD of new node is 4.
Then we create a new segment (S4) and rehash items of S1 into it. The
migrated items in S1 are not deleted since they become invalid with
the modification of LD and subsequent inserted items will overwrite
them directly. In the next step shown in Fig. 7, we use persist barriers
to ensure the ordering of the updates to survive system failures. That
is, (1) we set the entries of the new RT-directory node to point to S1
and S4, and update LD of S4 to 3. (2) We change entry 00 of node 1
to point to node 2. (3) We update LD of S1 to 3. Moreover, we also
support segment merge which is an inverse process of segment split.

Traditionally, to identify invalid items in case of system failures, we
also need to write back the new split segment to NVM with flush in-
structions. Our cross-KV can distinguish partially written items upon re-
covery Thus, to alleviate the overhead of data persistence, we use a de-
layed flush method that leverages normal cache evictions to write back
the new split segment. Meanwhile, we leverage unique RT-directory
structure to flush segments regularly, which prevents certain cache
lines from residing in the cache for a long time.

Specifically, the simple cache evictions may lead to inserted data
loss. For example, item t1 is stored in segment s1, and it is rehashed to
segment s2 because of s1’s split. Then another item t2 is inserted to s1
and overwrites t1. If a system failure occurs before r1 in s2 is written
back to NVM, we cannot find t1 anymore. To resolve this problem,
we make some changes: when a segment split incurs the creation of
a new RT-directory node, we write back this segment to NVM directly
and make it non-addressable. Next, we create two new segments and



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 7. Examples of failure-atomic segment split.

rehash all items of the old segment into them. By doing so, each RT-
directory node has a non-addressable segment, and we can recover the
data from it after a system failure. Different from previous schemes
flushing each new segment, in our way, on average we split 8 segments
but use instructions to flush one segment since an RT-directory node
contains eight segment addresses. This method mitigates the cost of
data persistence and ensures data consistency.

3.4. Improvement of load factor

The load factor is another essential parameter for hashing structures
in memory and caches with limited space, i.e., a higher load factor
means more items can be stored. However, the introduction of the
segment layer leads to a low load factor. Because no matter which
bucket in the segment overflows, we have to split the entire segment to
resolve hash collisions even if there are many free slots in other buckets
of the old segment.

Traditional hashing schemes improve the maximum load factor by
efficiently dealing with hash collisions. For example, chained hash-
ing [49] stores colliding items in linked lists. However, it requires
frequent memory allocation and pointer access, resulting in low CPU
cache efficiency. 2-choice hashing [50] applies two hash functions to
compute two positions and inserts the target item into the empty one.
However, it cannot improve the load factor well. Cuckoo hashing [38]
exploits several hash functions and allows multiple cuckoo evictions,
but it suffers from cascading writes which incur high insertion latency.
Linear probing [37] scans the following buckets until it finds empty
slots to store conflicting items. Thus, it is cache-friendly and can
sequentially access items.
6

To address the low load factor issue, CCEH allows probing four
buckets to store colliding items. However, our evaluation shows that
its maximal load factor is lower than 45%. Though CCEH can improve
the load factor by increasing the probing distance, it is not sufficient
to achieve a high load factor to use this way alone, as shown in
Section 5.2.3. Therefore, based on linear probing, we also exploit
stash schemes. Specifically, we still set the default probing distance
to 4 buckets since Intel Optane DCPMM is accessed by 256-byte block
granularity [51]. The stash is array-structured secondary storage which
is non-addressable and used to store colliding items. Every segment has
a stash and all buckets in this segment share this stash. When a hash
collision occurs, we first probe the following 4 buckets to find a proper
slot, and if fail, we insert the target item to stash. Therefore, we can
obtain a higher load factor in a simple but efficient way.

3.5. Recovery of two directories

In this section, we describe the recovery of two directories after a
normal shutdown and system crash.

Recovery after a normal shutdown. In the case of a normal shut-
down, HMEH flushes the RT-directory to NVM and then stores a flag
to indicate a normal shutdown. When rebooting, HMEH only reads
the RT-directory and rebuilds the FS-directory in DRAM. Since the
segment addresses are stored in the leaf nodes of the RT-directory,
we do a breadth-first search for RT-directory to retain the leaf nodes.
Then we get the global depth (GD), the local depth (LD), and the
starting position of each segment corresponding to the FS-directory. As
Fig. 4 shows, with GD and LD, we can calculate the reference count
which indicates the number of contiguous entries pointing to the same
segment. At last, we rebuild the entries of the FS-directory according
to starting positions and reference counts.

Recovery after a system crash. For a system crash, HMEH first
recovers the RT-directory. Since data consistency problems only happen
in leaf nodes of the RT-directory, we just need to recover leaf nodes.
We exploit the global depth of the RT-directory and the local depth of
segments to check the entry consistency. Specifically, we first access the
leftmost entry to obtain LD and GD and calculate the reference count.
Second, we compare the LD of the first entry with that of the following
entries in the same reference count sequentially. If the LD of the latter
entry is different, we make this entry equal to the first entry. Then we
iteratively detect the inconsistencies of leaf nodes until the recovery of
the RT-directory is completed. At last, we rebuild the FS-directory from
the RT-directory as mentioned before.

4. Optimized concurrent HMEH

In the case of common operations (i.e., insertion, search, deletion),
hashing structures can achieve high scalability since concurrent threads
generally access different parts of the hash table. The main challenge is
allowing common operations of the hash table to be executed in parallel
with resizing (i.e., segment split and FS-directory doubling).

For segment split, CCEH and original HMEH both employ a reader-
writer lock, while Dash uses bucket-level locking which will cause high
lock overhead since it must acquire all bucket locks before splitting a
segment. For directory doubling, they all need to hold a global lock
to prevent concurrent threads from updating the directory. However,
the global lock naturally increases the latency and block all concurrent
queries of other threads. To mitigate lock maintenance overhead, we
implement an optimized HMEH (called OP-HMEH) that leverages op-
timistic locking to protect segments and proposes a lock-free directory
doubling.



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.

o
f
t
v
h
e
e
F

c
s

4.1. Optimistic concurrency in OP-HMEH

We implement a lightweight and optimistic locking for segments by
using a version number and the CAS instruction, similar to previous
work [40–42]. The 8-byte version number is used as a lock that
indicates whether the corresponding segment is occupied, i.e., ‘‘odd
number’’ for the occupied segment and ‘‘even number’’ for the free
segment. Before updating the segment, the write thread tries the CAS
instruction to set the version number from ‘‘even number’’ to ‘‘odd
number’’ until success. Then it executes the insertion operation and
other threads cannot modify this segment. After finishing the insertion,
the thread increments the version number to release the lock. With the
version lock, we can detect conflicts by comparing the version numbers
before and after reading the target item. Thus, search operations are
allowed to proceed without holding the version lock. To search for an
item, we first check whether the segment lock is being held (whether
the version number is odd) and wait until the lock is released. Then we
access the segment to find the target item and read the version number
again. If the version number is changed, we require to retry the search
since the item might be updated by other concurrent threads.

However, the lock-free search may incur a correctness problem.
Suppose a search thread t1 accesses the segment s1 but sleeps before
reading the version number of s1. Then, an insertion thread split s1
and migrate kv1 to the new segment. Meanwhile, kv1 in the old s1
is overwritten by another insertion thread. Later, although kv1 exists
in the new segment, t1 will miss the target item due to the concurrent
moving of other threads. To fix this missing issue, we use a verification-
based retry mechanism. After reading the version number of the current
segment, we need to check whether the current segment is the target
one, i.e., we recompute the location of the target segment and check
whether the location matches the current segment. If not, we retry the
search operation to avoid the false-negative case. Since the verification
overhead is very low and the above case is rare, we can guarantee the
correctness of lock-free search with minor overhead.

For all operations of two directories, no lock is taken. Basic op-
erations (i.e., updating directory entries) are inherently thread-safe
without any locks since a thread must first acquire the segment lock
before modifying directory entries. The update ordering of the RT-
directory and FS-directory is fixed, the RT-directory first and then
the FS-directory. Thus, the synchronization between two directories is
serialized. When resizing the RT-directory, we employ the CAS instruc-
tion to guarantee the concurrency correctness since its expansion only
results in a single 8-byte update operation. For FS-directory doubling,
we create a new double-sized FS-directory and then update the next
pointer of the old FS-directory to point to the new one by trying the CAS
instruction. Finally, we exploit a lazy-migrating scheme to amortize
entries migration over future queries, further reducing the blocking
time caused by FS-directory doubling.

4.2. Implementation algorithms

In this subsection, we describe how OP-HMEH is implemented and
introduce the algorithms of its basic operations, including insertion,
search, and deletion.

Insertion. Algorithm 1 presents the pseudo-code of the insertion
peration in OP-HMEH. To insert a new item with <key, value>, we
irst get the pointer to FS-directory and the global depth, then compare
heir version numbers to verify they are updated atomically. If their
ersion numbers do not match, we reload them. Next, we compute the
ash key and use its prefix bits to index the corresponding FS-directory
ntry which contains the segment address (Lines 4–6). If the entry is
mpty, we call Fillup() function to migrate this entry from the old
S-directory to this new FS-directory.

Second, we try the CAS instruction to acquire the version lock of the
urrent segment. However, the current segment might not be our target
7

egment and leads to a wrong insertion since it might be split by other
ALGORITHM 1: Insert(key, value)
1: RETRY:
2: //Compute the locations in directory and segment
3: check_version (FS_dir_pointer, GD); //Continue if versions match, retry

otherwise
4: k = hash(key);
5: seg_idx = k >> (k_bit - GD);
6: seg = FS_dir_entries[seg_idx];
7: //If the entry of FS-directory is null, then help to migrate the old entries

to the new fs-directory
8: if seg == null then
9: seg→Fillup();

10: goto RETRY;
11: end if
12: //Try CAS to acquire the lock until success
13: repeat
14: Acqure(segment_version_lock)
15: until a cas successes
16: //If the current segmen is not the target segment, retry
17: if key_ seg_prefix != seg_prefix then
18: Release(segment_version_lock);
19: goto RETRY;
20: end if
21: //When the slot is empty or invalid, insert key and value
22: buc_idx = k % BUCK_NUM; // BUCK_NUM: the number of buckets in

each segment
23: for each slot in bucket[buck_idx]-bucket[buck_idx+3] do
24: if slot.key = empty or slot.key.seg_prefix!= seg_prefix then
25: slot.<key,value> = Cross-KV(key,value);
26: Release(segment_version_lock);
27: return TRUE;
28: end if
29: end for
30: for for each slot in stash do
31: if slot.key = empty or slot.key.seg_prefix!= seg_prefix then
32: slot.<key,value> = Cross-KV(key,value);
33: Release(segment_version_lock);
34: return TRUE;
35: end if
36: end for
37: //If there is no proper slot, split the segment
38: Split();
39: goto RETRY;

concurrent threads after we index it but before we acquire its lock. To
guarantee the correctness of insertion, after holding the segment lock,
we must verify whether the current segment we access is the target
segment. If not, we release the segment lock and retry our insertion.

Third, we find a proper slot (i.e., an empty slot or a slot containing
an invalid item caused by lazy deletion) in the target buckets (Lines
22–24). When a proper slot is found, the target item is inserted by
cross-KV mechanism. Finally, we release the segment by incrementing
the version number. If there is no proper slot in the target buckets, we
probe the stash buckets. When the stash is also full, the segment should
be split with Split() function, as described in Section 3.3.

Search. Algorithm 2 describes the process of the search operation.
Similar to the insertion operation, the first step of a search is to check if
the version numbers of the pointer to FS-directory and the global depth
are equal. Inconsistent version numbers indicate a concurrent thread is
doubling the FS-directory, we then read them again. Second, we use the
hash value of the key and global depth to select a segment. Meanwhile,
if needed, we help to fill up the new FS-directory (Lines 7–9).

Next, we check whether the current segment is our target segment
and retry if it is not. Third, we need to verify the target segment is not
locked. Once the segment is free, we continue to search the queried key
in the target buckets. If neither buckets contain the queried key, we
then search the stash buckets. After finishing the search operations, we



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.

1
1
1
1
1
1

2
2

2
2
2
2
2
3

3
3

t
k
p
f
d
p
m
t

5

5

e
p

ALGORITHM 2: Search(key)
1: RETRY:
2: //Compute the locations in directory and segment
3: check_version (FS_dir_pointer, GD);
4: k = hash(key);
5: seg_idx = k>>(k_bit - GD);
6: seg = FS_dir_entries[seg_idx];
7: if seg == null then
8: seg→Fillup();
9: goto RETRY;

10: end if
11: if key_ seg_prefix != seg_prefix then
12: goto RETRY;
3: end if
4: if is_version_lock_odd then
5: goto RETRY;
6: end if
7: buc_idx = k % BUCK_NUM;
8: for each slot in bucket[buck_idx]-bucket[buck_idx+3] do

19: if slot.key = key then
20: if is_version_lock_changed then
1: goto RETRY;
2: end if

23: return slot.value;
24: end if
5: end for
6: for for each slot in stash do
7: if slot.key = key then
8: if is_version_lock_changed then
9: goto RETRY;
0: end if

31: return slot.value;
32: end if
3: end for
4: return NULL;

ALGORITHM 3: Delete(key)
1: RETRY:
2: //Search the position of the target item
3: Slot = Search_delete(key);
4: //If the target key cannot be found, return false
5: if slot == NULL then
6: return FALSE;
7: else
8: //Delete the target item and reset the flag
9: slot.cross-kv = empty;

10: Release(segment_version_lock);
11: return TURE;
12: end if

read the version number again to check whether it is modified by other
concurrent threads. If the version number is not changed, we return
the result. Otherwise, we redo the search operation. In this way, the
implicit conflict can be identified and will not lead to any problem of
correctness.

Deletion. Algorithm 3 depicts the deletion operation. When deleting
an item, we first call the function Search_delete() to find the slot
containing the target key. The implementation of Search_delete() is
similar to Insert() in Algorithm 1 while it returns a slot pointer. To
guarantee the correctness of deletions, Search_delete() also requires to
hold the segment lock and check whether it indexes the right segment
before searching for the target item. This is because a concurrent thread
might split the segment and copy the target item to the new segment
during item migration. If we do not verify the segment, we may delete
the target item in the old segment and return TURE. However, the
duplication of the deleted item still exists in the new segment, resulting
in an invalid deletion. Next, if Search_delete() returns NULL, the target
8

Table 1
YCSB workloads.

Workloads Insert ratio (%) Search ratio (%)

Load A 100 0
B 50 50
C 0 100

item does not exist in the hash table. Otherwise, we atomically delete
the item by modifying the cross-KVs to empty KV. Finally, we release
the version lock of this segment.

5. Performance evaluation

5.1. Experimental setup

We evaluate the performance of HMEH against the state-of-the-art
NVM-based hashing indexes on the Intel Optane DC Persistent Memory
Module (DCPMM). All experiments are conducted on a 2-socket, 18-
core Linux server (kernel version 5.4.0) equipped with 1.5 TB PMM,
192 GB DRAM, and 24MB Last Level Cache (LLC). We use the ext4-
DAX file system and the APP Direct mode of Optane DCPMM [4] to
perform all experiments. We use PMDK [52] to manage the NVM space
and apply clwb for cache line flushes, which is more efficient than
clflush and clflushopt. To avoid the effect of NUMA architecture, all
experiments are performed on one CPU socket, like RECIPE [53].

Compared systems. We compare our work with the state-of-the-
art NVM-friendly hashing schemes (i.e., HDNH, Dash, CCEH, and level
hashing)1 and typical DRAM-based hashing works (linear hashing and
cuckoo hashing). To be fair, we implement persistent linear hashing
and cuckoo hashing (referred to as P-LINP and P-CUCK) by using persist
barriers.

In our experiments, the initial hash table of every scheme is sized for
2048 key–value items. For LEVL, we optimize the bucket size as a cache
line that can leverage high cache efficiency. For other hash tables,
we set them with their optimal parameters in their original papers.
HDNH uses 256-byte buckets to consist with the granularity of Optane
DCPMM. Dash exploits 256-byte buckets and 16 KB segments, each of
them has two stash buckets. CCEH employs the default configuration
with 64-byte buckets and 16 KB segments. We observe that the original
CCEH does not guarantee the atomic update of the global depth and the
pointer to the directory. Thus, we also apply the version number for the
directory to avoid failures in experiments. Similar to prior work [17],
we allow P-CUCK to try 16 evictions before rehashing, and P-LINP
performs full-table rehashing when the load factor achieves 95%.

Workloads. We use 160 million random integers as micro-workload
o measure the throughputs and latencies of single queries, whose
ey and value are both set to 8 bytes. To evaluate the concurrent
erformance, we generate 3 macro-workloads to test the mixed queries
rom the widely used macro-benchmark YCSB [54], the industry stan-
ard for evaluating key–value indexes. The workloads have different
roportions of insert and search queries, described in Table 1. For each
acro-workload, we first preload the hash table with 80 million items,

hen run 80 million operations.

.2. Experimental results and analysis

.2.1. Sensitivity analysis of HMEH design
To find the optimal configuration of HMEH, we devise several

xperiments to measure the designs of HMEH. First, we quantify the
erformance effects with different segment sizes which are varied from

1 We downloaded the authors’ implementations from https://github.com/
DICL/CCEH, https://github.com/baotonglu/dash, and https://github.
com/Pfzuo/Level-Hashing.

https://github.com/DICL/CCEH
https://github.com/DICL/CCEH
https://github.com/baotonglu/dash
https://github.com/Pfzuo/Level-Hashing
https://github.com/Pfzuo/Level-Hashing


Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 8. Throughput of different segment sizes.
Fig. 9. Insertion Latency of HMEH when adding different designs. (Baseline: persistent
extendible hashing; D1: the changes of structure; D2: cross-KV for insertion; D3: delayed
flush; All: HMEH that uses D1+D2+D3+stash).

256B to 256 KB. The bucket size is fixed to a cache line, and we allow
to probe 4 buckets to resolve hash collisions. To eliminate the effect of
stash on the experimental results, we set the size of stash to 0.

Fig. 8(a) illustrates the average throughput of inserting 160 million
random items in HMEH with different segment sizes. We see that the
insertion throughput improves as the segment size grows. The main
reason is small segments incur more frequent segment splits than big
segments when inserting an equal number of items, increasing the en-
tire execution time. However, big segment splits require to flush more
cache lines into NVM, which increases the latency of a single segment
split. As shown in Fig. 8(a), the average latency of segment splits
sharply increases and even reaches 441 usec when the segment size
is 256 KB. From the experimental results, to balance average insertion
throughput and latency of segment split, the reasonable segment size
is in the range of 4 KB to 16 KB.

Generally, a search operation only needs to access one bucket to
find the target item. However, the methods to address hash collisions
increase the number of bucket accesses. In Fig. 8(b), the average
probing distance means the average number of extra bucket accesses
when an item is searched. It decreases from 0.23 buckets to 0.021
buckets as we increase the segment sizes. This is because HMEH with
larger segment size can leverage more bits to determine which bucket
is accessed per query, avoiding probing more buckets to find the target
items. As Fig. 8(b) shows, due to the decrease of the average probing
distance, the average search throughputs increase.

Next, we investigate the performance of HMEH with different stash
sizes. The segment size is set to 16 KB, and we vary stash sizes
from 1 bucket to 16 buckets. As Fig. 8(c) shows, with the increase
of stash size, the search throughputs degrade slowly since we require
to access more slots to find target items. We then evaluate the load
factors which are closely related to stash configuration. The maximum
load factor linearly grows because the bigger stashes can store more
colliding items. From the aforesaid observations, the optimal stash size
is between 1 bucket and 8 buckets.

5.2.2. Comparative performance
According to the experimental results of HMEH design, the size of

the segment is set to 16 KB and the stash has 4 buckets for the rest
9

Fig. 10. Insertion Latency of different hashing schemes.

of the experiments. We first analyze the performance gains brought by
the designs of our HMEH (i.e., hybrid structure, cross-KV mechanism,
delayed flush, and the stash). We insert 160 million random items and
break down the average latency of inserting an item into maintaining
directory time (denoted as RT-directory and FS-directory), and other
time spent in segment (denoted as segment). We apply persistent
extendible hashing as our experimental baseline. As Fig. 9 shows, the
design of hybrid memory yields significant performance gains, and the
overhead of hybrid directories is smaller than the overhead of one FS-
directory in NVM. This is because the operations on FS-directory are
executed in DRAM and the resizing of RT-directory in NVM can reuse
all old nodes and only allocate a new node, whose overhead can be
ignored.

Then, we compare the average insertion latency of our HMEH
against those of other persistent hashing schemes. We also break down
the average latency of inserting an item into the write time (denoted
as write), and the rehashing time (denoted as rehash). Since HDNH
uses background threads to execute the rehashing operations, we only
exhibit its write time. As shown in Fig. 10, HMEH exhibits the best
insertion performance. Compared with HDNH, Dash, CCEH, P-CUCK,
LEVL, and P-LINP, we observe that HMEH speeds up the insertions
performance by 2.47×. HMEH, Dash, and CCEH show low rehashing
overhead because they are dynamic hashing schemes in which rehash-
ing is an incremental operation. LEVL presents the highest rehashing
latency. The reason is that level hashing requires to delete all items of
the bottom level in the old table via clwb during rehashing, unlike other
hashing schemes which can simply deallocate old hash tables without
extra deletion overhead.

5.2.3. Maximum load factor
To evaluate the maximum load factor, we insert 1 million items into

empty HMEH, CCEH, LEVL, HDNH, and Dash to calculate load factors
after every insertion, then we pick out the maximum one. P-LINP and
P-CUCK do not have a fixed load factor, thus they are not taken into
consideration in this experiment. Since HMEH performs segment split
when buckets accessed by linear probing and stash have no empty slots,
we measure HMEH with different probing distances and different stash
sizes. CCEH also exploits linear probing and Dash designs stash buckets
for every segment. For a fair comparison, we also evaluate CCEH and
Dash in the same way.



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 11. Maximum load factors of hash tables. (# in the NAME-x/y# indicates the
linear probing distance and the size of stash in buckets.)

Fig. 11 shows the experimental results. The maximum load factor
of LEVL achieves up to 92% since it uses many effective techniques
of load factor improvement, i.e., two-level structure, multi-slot bucket,
two hash functions, and cuckoo replacement. The non-volatile table of
HDNH is similar to LEVL, but it does not support the cuckoo movement.
Thus, the load factor of HDNH only reaches 87%. Dash exhibits a high
load factor that achieves up to 92% with 16 stash buckets because it
exploits a bucket load balancing technique. As linear probing distance
and stash size grow, the max load factors of HMEH increase stably
and can reach 96%. Note that HMEH has a higher load factor than
CCEH with the same number of sharing buckets. This is because HMEH
employs two mechanisms working in different positions of segments
and stash can be fully shared by all buckets in a segment. However,
with the increase of probing distance and stash size, we require to
access more buckets when inserting or searching an item. Thus, we
can choose different probing distances and stash sizes to meet the
requirements of different cases.

5.2.4. Concurrent performance
In this subsection, we evaluate the performance of multi-threaded

versions of our HMEH (i.e., original HMEH and OP-HMEH), HDNH,
Dash, LEVL, P-LINP, and libcuckoo [55], a state-of-the-art concurrent
cuckoo hashing scheme. For libcuckoo, we use its open-source C++
implementation [56].

In the experiments shown in Fig. 12, we run 3 workloads to mea-
sure the scalability of the aforementioned hashing schemes under an
increasing number of threads, including 2, 4, 8, 16, and 24 threads.
For the insert-only workload shown in Fig. 12(a), the throughputs of
LEVL, P-LINP, and libcuckoo do not scale with the increase of threads.
The main reason is that their rehashing operations incur high latencies
and block all insertions from other concurrent threads. Among them,
libcuckoo suffers from cascading writes and requires to lock the entire
cuckoo path to prevent other threads from accessing the slots in the
same cuckoo path. Thus, it causes many locking operations and shows
the worst performance.

With dynamic structure, Dash, CCEH, HMEH, and OP-HMEH scale
well. HDNH also shows scalable performance by using asynchronous
resizing. Though Dash and HDNH leverage fingerprint and bitmap
techniques to reduce unnecessary scans of the slots, it also induces extra
metadata maintenance overhead. Our OP-HMEH leverages a DRAM-
based directory and cross-KV mechanism to significantly reduce the
execution time of every insertion. Moreover, it leverages optimistic
concurrency control to improve the multi-threaded performance. As
Fig. 12(a) shows, OP-HMEH scales to 24 threads and outperforms
HDNH/ Dash/ CCEH up to 1.46×/ 1.73×/ 2.18×. Getting benefit from
lazy-migration directory doubling and lightweight concurrency control,
OP-HMEH improves the insertion throughput by 1.18× than HMEH.

Fig. 12(b)-12(c) present the average throughputs of YCSB mixed
workloads and the search-only workload. For the mixed workload,
10
OP-HMEH outperforms HMEH/ HDNH/ Dash/ CCEH/ LEVL/ P-LINP/
libcuckoo by 1.16×/ 1.72×/ 2.1×/ 5.69×/ 4.12×/ 14.1×. For search
operation, our HMEH and OP-HMEH have high performance due to the
DRAM-based FS-directory. However, when the thread number exceeds
16, their scalability is limited since their bucket probing causes many
unnecessary NVM accesses. Different HMEH, HDNH and Dash show
near-linear search performance. The main reason is that they use the
fingerprint technique to filter mismatched items. Level hashing and
libcuckoo scale with the increase of threads since they are the variants
of cuckoo hashing which is designed for read-intensive workloads. Note
that P-LINP exhibits higher search throughput. This is because P-LINP
has no indirect layer (e.g., directory) and stores items in the contiguous
memory space, which efficiently reduces memory accesses.

Tail latency is also a critical design issue in storage systems. How-
ever, for concurrent static hashing, resizing operations block concurrent
accesses and increase the response time because it involves intensive
data movements and requires exclusive access to the entire hash table.
Hence, we evaluate the tail latency of concurrent insertion. Fig. 13
illustrates its cumulative distribution function (CDF). Since static hash-
ing locks the whole hash table during rehashing which incurs dramatic
latency, the CDF graphs of LEVL, LINP, and libcuckoo have several flat
regions that indicate the time they take for each rehashing. However,
HMEH and CCEH are variants of extendible hashing whose resizing
operations only split one segment, significantly reducing blocking time.
As Fig. 13 shows, the maximum latency of LEVL is 21.7 s which is much
higher than that of our OP-HMEH, 0.92 s.

5.2.5. Impact of data size
Most hashing structures achieve constant-scale time complexity and

their search and insertion performance is insensitive to the dataset
sizes. However, every operation of extendible hashing requires extra
access to the directory, a doubt is whether the directory limits the scal-
ability as the data size grows. In the experiments shown in Fig. 14, we
measure the throughputs of different hashing schemes as the number
of key–value items increases from 16 million to 256 million. We first
warm up the hash table with 100 million key–value items and then use
16 threads to perform the mixed workload that consists of 50% insert
and 50% search operations.

From Fig. 14, we observe that the throughput of CCEH/Dash de-
creases by 23%/12.1%. The performance degradation is due to the
increased directory sizes with the growth of dataset size. As described
in Section 2.3, the LLC cache miss rate of the directory rises as the
directory size increases. The access to the directory in NVM is in the
critical path and significantly increases the query latency. However,
HMEH stores the directory in DRAM, thus moving the directory out of
the low-speed NVM. Thus, the throughput of our HMEH only decreases
slightly. Since OP-HMEH implements lock-free directory doubling, the
updates of directory entries can be executed in parallel without inter-
thread interference. Therefore, compared to other extendible hashing
structures, the FS-directory of OP-HMEH does not limit the scalabil-
ity of the hash table. Interestingly, the throughputs of static hashing
schemes remain unchanged while that of HDNH decreases by 32% as
the data size grows. This is because its oversimple hotspot identifi-
cation becomes inefficient with the increase of data size, resulting in
significant performance degradation.

5.2.6. Negative search throughput
This subsection evaluates the search throughputs of different hash

tables with different ratios of positive/negative searches. The positive
search means the target item exists in the hash table, and negative
search is the opposite.

Fig. 15 shows the average search throughput under three work-
loads with different positive/negative search ratios. Level hashing and
libcuckoo are both based on cuckoo hashing which is optimized for

the read-intensive workloads. Therefore, their search throughput hardly



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Fig. 12. Scalability on YCSB workloads.
Fig. 13. The CDF of Insertion Latency.

Fig. 14. Impact of dataset size.

Fig. 15. Average throughput of positive and negative searches.

declines as the negative search ratio increases. However, the perfor-
mance of P-LINP drops dramatically when workload has more negative
searches. The main reason is that P-LINP requires to scan the successive
buckets to find the target item.

Interestingly, with the growth of negative search ratio, Dash
achieves better search performance instead. Because it uses fingerprints
technique which avoids unnecessary NVM accesses and particularly
benefits negative search. Although HDNH also keeps fingerprints for
all items, it still exhibits lower negative search throughput. The main
reason is its read operations first need to search the hot table and
then the hash table to find target items. As Fig. 15 shows, HMEH
has a higher negative search throughput than CCEH. Because the FS-
directory of HMEH stored in DRAM has lower access latency than that
11
Table 2
Recovery time for different workload sizes.

Number of indexed items 1.6 million 16 million 160 million

RT-directory recovery time (ms) 0.47 6.3 50.1
FS-directory rebuild time (ms) 2.5 21.8 172.2

of CCEH placed in NVM. Since HMEH requires to lookup the extra stash
when failing to find the target item, the search performance of HMEH
decreases as the negative search ratio grows. To obtain better lookup
performance, we can set the stash size to be smaller.

5.2.7. Recovery time of directories
At last, we evaluate the recovery time of two directories after a

system failure with one thread. The recovery consists of two steps,
recovering RT-directory and rebuilding FS-directory from RT-directory.
We vary the number of inserted items from 16 million to 160 million
and deliberately inject faults. Table 2 shows the recovery time of
different workload sizes with one thread. We see that the recovery
time of RT-directory only takes 0.47 msec and 50.1 msec if there
are 1.6 million and 160 million items in HMEH. The rebuild time
of FS-directory spends 2.5 msec and 172.2 msec. Compared to the
whole execution time, the recovery time is at the millisecond level
which is negligible. Therefore, directories of HMEH can achieve an
instantaneous recovery.

6. Conclusion

Existing NVM-friendly hashing schemes suffer from two weaknesses:
(1) the defective designs of hashing structures and (2) high overhead
for data consistency. In this paper, we propose HMEH, a variant of
extendible hashing for hybrid DRAM-NVM memory, to address such
problems. First, we adopt the extendible hashing structure for cost-
efficient resizing but place the directory in DRAM to obtain faster
access. We keep a radix-tree structure in NVM to rebuild FS-directory
upon recovery. Second, we leverage cross-KV and delayed flush mecha-
nisms to greatly reduce the overhead of data consistency. To efficiently
support multi-threaded operations, we also implement an optimized
HMEH that delivers high performance and scalability. Using real Intel
Optane DCPMM, experimental results present that OP-HMEH achieves
up to 2.18× higher throughput than state-of-the-art persistent hashing
structures. The optimized HMEH provides higher insertion scalability
that obtains up to 1.18× speedup than the original HMEH under YCSB
workloads.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.



Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
Acknowledgments

This work was supported by NSFC, China (No. 61832020), Na-
tional Key R&D Program of China (No. 2018YFB1003305), Project
of Shenzhen Technology Scheme, China (JCYJ20210324141601005),
and Natural Science Foundation of Shandong Province, China (No.
ZR2019LZH012). We are grateful to our anonymous reviewers for their
constructive comments and suggestions.

References

[1] Intel, Intel and micron produce breakthrough memory technology, 2015,
Retrieved from https://newsroom.intel.com/news-releases/intel-andmicron-
produce-breakthrough-memory-technology.

[2] S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y. Chen, R.M. Shelby, M.
Salinga, D. Krebs, S. Chen, H. Lung, C.H. Lam, Phase-change random access
memory: A scalable technology, IBM J. Res. Dev. (2008) 465–479, http://dx.
doi.org/10.1147/rd.524.0465.

[3] T. Kawahara, Scalable spin-transfer torque RAM technology for normally-off
computing, IEEE Des. Test Comput. 28 (1) (2011) 52–63, http://dx.doi.org/10.
1109/mdt.2010.97.

[4] Intel, Intel® optane™ DC persistent memory, 2019, Retrieved from
https://www.intel.com/content/www/us/en/products/memory-storage/optane-
dc-persistent-memory.html.

[5] M.K. Qureshi, V. Srinivasan, J.A. Rivers, Scalable high performance main memory
system using phase-change memory technology, in: Proceedings of the 36th
Annual International Symposium on Computer Architecture, ISCA, 2009, http:
//dx.doi.org/10.1145/1555754.1555760.

[6] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, W. Lehner, FPTree: A Hybrid SCM-
DRAM persistent and concurrent B-tree for storage class memory, in: Proceedings
of the 2016 International Conference on Management of Data, SIGMOD, 2016,
http://dx.doi.org/10.1145/2882903.2915251.

[7] J. Yang, Q. Wei, C. Chen, C. Wang, K.L. Yong, B. He, NV-tree: Reducing
consistency cost for NVM-based single level systems, in: Proceedings of the 13th
USENIX Conference on File and Storage Technologies, FAST, 2015, pp. 167–181,
URL: http://dl.acm.org/citation.cfm?id=2750482.2750495.

[8] F. Xia, D. Jiang, J. Xiong, N. Sun, HiKV: A hybrid index key-value store for
DRAM-NVM memory systems, in: 2017 USENIX Annual Technical Conference,
USENIX ATC, 2017, pp. 349–362, URL: https://www.usenix.org/conference/
atc17/technical-sessions/presentation/xia.

[9] S. Chen, Q. Jin, Persistent B+-trees in non-volatile main memory, in: Proceedings
of the VLDB Endowment (PVLDB), 2015, pp. 786–797, http://dx.doi.org/10.
14778/2752939.2752947.

[10] D. Hwang, W. Kim, Y. Won, B. Nam, Endurable transient inconsistency in
byte-addressable persistent B+-tree, in: 16th USENIX Conference on File and
Storage Technologies, FAST, 2018, pp. 187–200, URL: https://www.usenix.org/
conference/fast18/presentation/hwang.

[11] S.K. Lee, K.H. Lim, H. Song, B. Nam, S.H. Noh, WORT: Write optimal radix
tree for persistent memory storage systems, in: 15th USENIX Conference on
File and Storage Technologies, FAST, USENIX Association, Santa Clara, CA,
2017, pp. 257–270, URL: https://www.usenix.org/conference/fast17/technical-
sessions/presentation/lee-se-kwon.

[12] hivaram Venkataraman, N. Tolia, P. Ranganathan, R.H. Campbell, Consistent and
durable data structures for non-volatile byte-addressable memory, in: Proceedings
of the 9th USENIX Conference on File and Storage Technologies, FAST, 2011,
pp. 61–75, URL: http://www.usenix.org/events/fast11/tech/techAbstracts.html#
Venkataraman.

[13] B. Debnath, A. Haghdoost, A. Kadav, M.G. Khatib, C. Ungureanu, Revisiting hash
table design for phase change memory, in: Proceedings of the 3rd Workshop on
Interactions of NVM/FLASH with Operating Systems and Workloads, INFLOW,
2015, http://dx.doi.org/10.1145/2819001.2819002.

[14] P. Zuo, Y. Hua, A write-friendly hashing scheme for non-volatile memory
systems, in: Proceedings of the 33rd International Conference on Massive Storage
Systems and Technology, MSST, 2017.

[15] P. Zuo, Y. Hua, J. Wu, Write-optimized and high-performance hashing index
scheme for persistent memory, in: 13rd USENIX Symposium on Operating
Systems Design and Implementation, OSDI, 2018, pp. 461–476, URL: https:
//www.usenix.org/conference/osdi18/presentation/zuo.

[16] P. Zuo, Y. Hua, J. Wu, Level hashing: A high-performance and flexible-resizing
persistent hashing index structure, ACM Trans. Storage 15 (2019) 1–30, http:
//dx.doi.org/10.1145/3322096.

[17] M. Nam, H. Cha, Y. Choi, S.H. Noh, B. Nam, Write-optimized dynamic hashing
for persistent memory, in: Proceedings of the 17th USENIX Conference on File
and Storage Technologies, FAST, USENIX Association, Boston, MA, 2019, pp.
31–44, URL: https://www.usenix.org/conference/fast19/presentation/nam.

[18] B. Lu, X. Hao, T. Wang, E. Lo, Dash: Scalable hashing on persistent memory, Proc.
VLDB Endow. 13 (8) (2020) 1147–1161, http://dx.doi.org/10.14778/3389133.
3389134, URL: http://www.vldb.org/pvldb/vol13/p1147-lu.pdf.
12
[19] J. Zhu, K. Huang, X. Zou, C. Huang, N. Xu, L. Fang, HDNH: a read-efficient and
write-optimized hashing scheme for hybrid DRAM-NVM memory, in: Proceedings
of the 50th International Conference on Parallel Processing, ICPP, Chicago,
Illinois, USA, 2021.

[20] R. Fagin, J. Nievergelt, N. Pippenger, H.R. Strong, Extendible hashing-a fast
access method for dynamic files, ACM Trans. Database Syst. (1979) 315–344,
http://dx.doi.org/10.1145/320083.320092.

[21] W. Litwin, Linear hashing: A new tool for file and table addressing, in: Sixth
International Conference on Very Large Data Bases, October 1-3, 1980, Mon-
treal, Quebec, Canada, Proceedings, IEEE Computer Society, Montreal, Quebec,
Canada, 1980, pp. 212–223.

[22] S. Patil, G.A. Gibson, Scale and concurrency of GIGA+: file system directories
with millions of files, in: Proceedings of the 9th USENIX Conference on File and
Storage Technologies, FAST, 2011, pp. 177–190, URL: http://www.usenix.org/
events/fast11/tech/techAbstracts.html#Patil.

[23] ORACLE, Architectural overview of the oracle ZFS storage appliance,
2018, https://www.oracle.com/technetwork/server-storage/sun-unified-storage/
documentation/o14-001-architecture-overviewzfsa-2099942.pdf.

[24] PostgreSQL, PostgreSQL, 2020, http://www.postgresql.org/.
[25] Memcached, Memcached, 2018, https://memcached.org/.
[26] Redis, Redis, 2018, https://redis.io/.
[27] S. Li, H. Lim, V.W. Lee, J.H. Ahn, A. Kalia, M. Kaminsky, D.G. Andersen,

S. O, S. Lee, P. Dubey, Architecting to achieve a billion requests per second
throughput on a single key-value store server platform, in: Proceedings of the
42nd Annual International Symposium on Computer Architecture, ISCA, 2015,
http://dx.doi.org/10.1145/2749469.2750416.

[28] H. Garcia-Molina, K. Salem, Main memory database systems: an overview, IEEE
Trans. Knowl. Data Eng. (TKDE) (1992) 509–516, http://dx.doi.org/10.1109/69.
180602.

[29] H. Lim, M. Kaminsky, D.G. Andersen, Cicada: dependably fast multi-core in-
memory transactions, in: Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD, 2017, http://dx.doi.org/10.1145/3035918.
3064015.

[30] Y.O. Koçberber, B. Grot, J. Picorel, B. Falsafi, K.T. Lim, P. Ranganathan, Meet the
walkers: Accelerating index traversals for in-memory databases, in: Proceedings
of the 46th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO, 2013, http://dx.doi.org/10.1145/2540708.2540748.

[31] P.J. Mucci, S. Browne, C. Deane, G. Ho, PAPI: A portable interface to hardware
performance counters, in: Proceedings of the Department of Defense HPCMP
Users Group Conference, Vol. 710, 1999.

[32] S. Scargall, Persistent memory architecture, in: Programming Persistent Memory:
A Comprehensive Guide for Developers, A Press, Berkeley, CA, 2020, pp. 11–30,
http://dx.doi.org/10.1007/978-1-4842-4932-1_2.

[33] D.S. Rao, S. Kumar, A.S. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran, J.
Jackson, System software for persistent memory, in: Proceedings of the Ninth
European Conference on Computer Systems, EuroSys, http://dx.doi.org/10.1145/
2592798.2592814.

[34] H. Volos, A.J. Tack, M.M. Swift, Mnemosyne: lightweight persistent memory, in:
Proceedings of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2011, http://dx.
doi.org/10.1145/1950365.1950379.

[35] Intel, eADR: New opportunities for persistent memory applications, 2021,
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-
new-opportunities-for-persistent-memory-applications.html.

[36] X. Han, J. Tuck, A. Awad, Dolos: Improving the performance of persistent
applications in ADR-supported secure memory, in: MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, ACM, 2021, http:
//dx.doi.org/10.1145/3466752.3480118.

[37] B. Pittel, Linear probing: The probable largest search time grows logarithmically
with the number of records, J. Algorithms 8 (2) (1987) 236–249, http://dx.doi.
org/10.1016/0196-6774(87)90040-x.

[38] R. Pagh, F.F. Rodler, Cuckoo hashing, J. Algorithms 51 (2) (2004) 122–144,
http://dx.doi.org/10.1016/j.jalgor.2003.12.002.

[39] D. Lea, Package util.concurrent release 1.3.4, 2003, http://gee.cs.oswego.edu/
dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html.

[40] P.L. Lehman, S.B. Yao, Efficient locking for concurrent operations on B-trees,
ACM Trans. Database Syst. 6 (4) (1981) 650–670, http://dx.doi.org/10.1145/
319628.319663.

[41] S.K. Cha, S. Hwang, K. Kim, K. Kwon, Cache-conscious concurrency control of
main-memory indexes on shared-memory multiprocessor systems, in: Proceedings
of the 27th International Conference on Very Large Data Bases, in: Proceedings of
the VLDB Endowment (PVLDB), Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2001, pp. 181–190.

[42] Y. Mao, E. Kohler, R.T. Morris, Cache craftiness for fast multicore key-value
storage, in: Proceedings of the 7th European Conference on Computer Systems,
Eurosys, ACM, 2012, pp. 183–196, http://dx.doi.org/10.1145/2168836.2168855.

[43] P. Fatourou, N.D. Kallimanis, T. Ropars, An efficient wait-free resizable hash
table, in: Proceedings of the 30th on Symposium on Parallelism in Algorithms
and Architectures (SPAA), Vienna, Austria, July 16-18, ACM, Vienna, Austria,
2018, pp. 111–120, http://dx.doi.org/10.1145/3210377.3210408.

https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
https://newsroom.intel.com/news-releases/intel-andmicron-produce-breakthrough-memory-technology
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1147/rd.524.0465
http://dx.doi.org/10.1109/mdt.2010.97
http://dx.doi.org/10.1109/mdt.2010.97
http://dx.doi.org/10.1109/mdt.2010.97
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/products/memory-storage/optane-dc-persistent-memory.html
http://dx.doi.org/10.1145/1555754.1555760
http://dx.doi.org/10.1145/1555754.1555760
http://dx.doi.org/10.1145/1555754.1555760
http://dx.doi.org/10.1145/2882903.2915251
http://dl.acm.org/citation.cfm?id=2750482.2750495
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
https://www.usenix.org/conference/atc17/technical-sessions/presentation/xia
http://dx.doi.org/10.14778/2752939.2752947
http://dx.doi.org/10.14778/2752939.2752947
http://dx.doi.org/10.14778/2752939.2752947
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast18/presentation/hwang
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
https://www.usenix.org/conference/fast17/technical-sessions/presentation/lee-se-kwon
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Venkataraman
http://dx.doi.org/10.1145/2819001.2819002
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb14
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb14
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo
https://www.usenix.org/conference/osdi18/presentation/zuo
http://dx.doi.org/10.1145/3322096
http://dx.doi.org/10.1145/3322096
http://dx.doi.org/10.1145/3322096
https://www.usenix.org/conference/fast19/presentation/nam
http://dx.doi.org/10.14778/3389133.3389134
http://dx.doi.org/10.14778/3389133.3389134
http://dx.doi.org/10.14778/3389133.3389134
http://www.vldb.org/pvldb/vol13/p1147-lu.pdf
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb19
http://dx.doi.org/10.1145/320083.320092
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb21
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Patil
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Patil
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Patil
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overviewzfsa-2099942.pdf
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overviewzfsa-2099942.pdf
https://www.oracle.com/technetwork/server-storage/sun-unified-storage/documentation/o14-001-architecture-overviewzfsa-2099942.pdf
http://www.postgresql.org/
https://memcached.org/
https://redis.io/
http://dx.doi.org/10.1145/2749469.2750416
http://dx.doi.org/10.1109/69.180602
http://dx.doi.org/10.1109/69.180602
http://dx.doi.org/10.1109/69.180602
http://dx.doi.org/10.1145/3035918.3064015
http://dx.doi.org/10.1145/3035918.3064015
http://dx.doi.org/10.1145/3035918.3064015
http://dx.doi.org/10.1145/2540708.2540748
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb31
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb31
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb31
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb31
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb31
http://dx.doi.org/10.1007/978-1-4842-4932-1_2
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/2592798.2592814
http://dx.doi.org/10.1145/1950365.1950379
http://dx.doi.org/10.1145/1950365.1950379
http://dx.doi.org/10.1145/1950365.1950379
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
https://www.intel.com/content/www/us/en/developer/articles/technical/eadr-new-opportunities-for-persistent-memory-applications.html
http://dx.doi.org/10.1145/3466752.3480118
http://dx.doi.org/10.1145/3466752.3480118
http://dx.doi.org/10.1145/3466752.3480118
http://dx.doi.org/10.1016/0196-6774(87)90040-x
http://dx.doi.org/10.1016/0196-6774(87)90040-x
http://dx.doi.org/10.1016/0196-6774(87)90040-x
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/dl/util/concurrent/intro.html
http://dx.doi.org/10.1145/319628.319663
http://dx.doi.org/10.1145/319628.319663
http://dx.doi.org/10.1145/319628.319663
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb41
http://dx.doi.org/10.1145/2168836.2168855
http://dx.doi.org/10.1145/3210377.3210408


Journal of Systems Architecture 125 (2022) 102462X. Zou et al.
[44] M. Friedman, M. Herlihy, V.J. Marathe, E. Petrank, A persistent lock-free queue
for non-volatile memory, in: Proceedings of the 23rd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, (PPoPP), Vienna, Austria,
February 24-28, ACM, Vienna, Austria, 2018, pp. 28–40, http://dx.doi.org/10.
1145/3178487.3178490.

[45] Y. Sun, Y. Hua, Z. Chen, Y. Guo, Mitigating asymmetric read and write costs
in cuckoo hashing for storage systems, in: 2019 USENIX Annual Technical
Conference (USENIX ATC) , Renton, WA, USA, July 10-12, USENIX Association,
Renton, WA, USA, 2019, pp. 329–344, URL: https://www.usenix.org/conference/
atc19/presentation/sun.

[46] T. Wang, J.J. Levandoski, P. Larson, Easy lock-free indexing in non-volatile
memory, in: 34th IEEE International Conference on Data Engineering, (ICDE)
, Paris, France, April 16-19, IEEE Computer Society, Paris, France, 2018, pp.
461–472, http://dx.doi.org/10.1109/ICDE.2018.00049.

[47] B. Fan, D.G. Andersen, M. Kaminsky, Memc3: Compact and concurrent memcache
with dumber caching and smarter hashing, in: Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation, NSDI, 2013, pp.
371–384.

[48] X. Zou, W. Fang, D. Fen, J. Chen, C. Liu, F. Li, N. Su, HMEH: write-optimal
extendible hashing for hybrid DRAM-NVM memory, in: Proceedings of the 36rd
International Conference on Massive Storage Systems and Technology, MSST,
2020.

[49] L.R. Johnson, An indirect chaining method for addressing on secondary keys,
Commun. ACM (1961) 218–222, http://dx.doi.org/10.1145/366532.366540.

[50] L. Carter, M.N. Wegman, Universal classes of hash functions, J. Comput. System
Sci. 18 (2) (1979) 143–154, http://dx.doi.org/10.1016/0022-0000(79)90044-8.

[51] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, S. Swanson, An empirical guide to
the behavior and use of scalable persistent memory, in: 18th USENIX Conference
on File and Storage Technologies, FAST, USENIX Association, Santa Clara, CA,
2020, pp. 169–182.

[52] Intel, Persistent memory development kit, 2019, http://pmem.io/.
[53] S.K. Lee, J. Mohan, S. Kashyap, T. Kim, V. Chidambaram, Recipe: converting

concurrent DRAM indexes to persistent-memory indexes, in: Proceedings of
the 27th ACM Symposium on Operating Systems Principles, SOSP, 2019, pp.
462–477, http://dx.doi.org/10.1145/3341301.3359635.

[54] B.F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, R. Sears, Benchmarking
cloud serving systems with YCSB, in: Proceedings of the 1st ACM Symposium on
Cloud Computing, SoCC, 2010, http://dx.doi.org/10.1145/1807128.1807152.

[55] X. Li, D.G. Andersen, M. Kaminsky, M.J. Freedman, Algorithmic improvements
for fast concurrent cuckoo hashing, in: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys, 2014, http://dx.doi.org/10.1145/
2592798.2592820.

[56] Libcuckoo, Libcuckoo library, 2019, https://github.com/efficient/libcuckoo.

Xiaomin Zou received the B.E. degree in computer science
and technology from the Nanchang University (NCU), China,
in 2017. She is currently working toward the Ph.D. degree
majoring in computer architecture at the Huazhong Univer-
sity of Science and Technology (HUST), China. Her research
interests include non-volatile memory (NVM) and key–value
stores. She published a paper at the conference of Mass
Storage Systems and Technologies (MSST).
13
Fang Wang received the B.E., M.E., and Ph.D. degrees
in computer science and technology from the Huazhong
University of Science and Technology (HUST), China, in
1994, 1997, and 2001, respectively. She is a Professor of
computer science and engineering at HUST. She has more
than 80 publications in major journals and international
conferences, including FGCS, IEEE TPDS, ACM TACO, ICDE,
HiPC, ICDCS, HPDC, ICPP, ICCD. Her interests include
distribute file systems, parallel I/O storage systems, and
graph processing systems.

Dan Feng received the B.E., M.E., and Ph.D. degrees in
computer science and technology from the Huazhong Uni-
versity of Science and Technology (HUST), China, in 1991,
1994, and 1997, respectively. She is a professor and vice
dean of the School of Computer Science and Technology,
HUST. Her research interests include computer architecture,
massive storage systems, and parallel file systems. She
has more than 80 publications to her credit in journals
and international conferences, including IEEE TPDS, JCST,
USENIX ATC, FAST, ICDCS, HPDC, SC, ICS, and ICPP. She
is a member of the IEEE.

Junhao zhu received the B.E. degree from National Univer-
sity of Defense Technology, Changsha, China in 2019. He is
currently a master at National University of Defense Tech-
nology. His research interests include non-volatile memory
computing and in-memory database systems. He published
a paper in the conference of International Conference on
Parallel Processing (ICPP).

Renzhi Xiao received the B.E. degree in software engi-
neering from Jiangxi University of Science and Technol-
ogy, Nanchang, China, in 2013. He is currently working
toward the Ph.D. degree majoring in computer archi-
tecture at Huazhong University of Science and Tech-
nology(HUST), Wuhan, China. His research interests in-
clude computer architecture, in-memory key–value store,
non-volatile memory, and NVM-based data structures.

Nan Su received the B.E. and M.E. degrees from Shandong
University of Science and Technology, China, in 2003 and
2007. She is a engineer at Inspur. She is engaged in research
work in distributed storage systems, non-volatile memory
storage systems.

http://dx.doi.org/10.1145/3178487.3178490
http://dx.doi.org/10.1145/3178487.3178490
http://dx.doi.org/10.1145/3178487.3178490
https://www.usenix.org/conference/atc19/presentation/sun
https://www.usenix.org/conference/atc19/presentation/sun
https://www.usenix.org/conference/atc19/presentation/sun
http://dx.doi.org/10.1109/ICDE.2018.00049
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb47
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb48
http://dx.doi.org/10.1145/366532.366540
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://refhub.elsevier.com/S1383-7621(22)00052-2/sb51
http://pmem.io/
http://dx.doi.org/10.1145/3341301.3359635
http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/2592798.2592820
http://dx.doi.org/10.1145/2592798.2592820
http://dx.doi.org/10.1145/2592798.2592820
https://github.com/efficient/libcuckoo

	A write-optimal and concurrent persistent dynamic hashing with radix tree assistance
	Introduction
	Background and motivation
	Extendible hashing
	Hashing index structure in NVM
	Data consistency for hashing schemes in NVM
	Concurrency control

	HMEH design
	Overview of HMEH
	Cross-KV mechanism
	Low-overhead structural modification operations
	Improvement of load factor
	Recovery of two directories

	Optimized concurrent HMEH
	Optimistic concurrency in OP-HMEH
	Implementation algorithms

	Performance evaluation
	Experimental setup
	Experimental results and analysis
	Sensitivity analysis of HMEH design
	Comparative performance
	Maximum load factor
	Concurrent performance
	Impact of data size
	Negative search throughput
	Recovery time of directories


	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


