
Accelerating Persistent Hash Indexes via Reducing
Negative Searches

Renzhi Xiao∗, Hong Jiang‡, Dan Feng∗†, Yuchong Hu†, Wei Tong∗, Kang Liu†, Yucheng Zhang∗,
Xueliang Wei†, Zhengtao Li∗

∗Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
†School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

‡Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, USA
Correspongding Author: dfeng@hust.edu.cn

{rzxiao,dfeng,yuchonghu,tongwei,kangliu,xueliang wei,lizhengtao10}@hust.edu.cn,hong.jiang@uta.edu,zhangyc hust@126.com

Abstract—Hashing is a widely used and efficient indexing
mechanism for key-value storage. Persistent memory (PM) has
attracted extensive attention in research due to its non-volatility
and DRAM-like performance. Intel DCPMM, as a PM, can
provide large capacity and low total cost of ownership, further
promoting the research of PM-based hash index. However, based
on real-world workloads, we found that negative searches of
existing PM-based hash indexes significantly degrade system
performance. A direct method to solve this problem is to use
a PM-based Bloom filter to reduce negative searches, but at the
cost of the decreased lifespan of PM due to extra PM writes.
An alternative method is to use a DRAM-based Bloom filter, but
it still faces increased multi-threaded insertion/deletion/positive-
search scalability overhead as well as increased data consistency
and recovery overhead.

In this paper, we propose SmartHT, a small-size DRAM-based
Bloom filter to accelerate hash table operations for PM while
solving the aforementioned problems. SmartHT uses efficient
merge write optimization with head insertion, lazy deletion, and
shortened average chained length of head-bucket to provide
high insertion/deletion/positive-search scalability, respectively. On
the other hand, it utilizes a merged-flush mechanism based
on an 8-byte failure-atomic write method to reduce flush in-
structions and extra PM writes to achieve low data consistency
overhead. Experimental results on Intel Optane DCPMM show
that, compared with the state-of-the-art persistent hash indexes,
SmartHT improves multi-threaded negative queries under uni-
form and skewed distributions by 4.61x-13.86x and 2.76x-12.99x
respectively, achieves high multi-threaded scalability and low
data consistency overhead, at the modest cost of recovery time
overhead.

Index Terms—persistent memory, PM-based hash index, neg-
ative research, multi-threaded scalability

I. INTRODUCTION

Persistent memory (PM) provides a new and promising path

of building large-scale and low-latency memory and storage

systems. PM, such as phase-change memory [1] and Intel

Optane DC Persistent Memory Module (DCPMM) [2], offers

This work was supported by NSFC (No. 61821003, U22A2027, 61832020,
62262042, 62202190), Key Research and Development Program of Hubei
Province (No. 2021BAA189), Hubei Province Science and Technology Re-
search Project (No. 2023BAA018), Hubei Province Natural Science Foun-
dation (No.2023AFB237), the Open Project Program of Wuhan National
Laboratory for Optoelectronics (No. 2021WNLOKF012), and Key Laboratory
of Information Storage System Ministry of Education of China.

desirable properties such as large capacity, high performance,

non-volatility, and byte addressability. PM is expected to

mix with DRAM as a hybrid memory system, bridging the

performance gap between HDD and DRAM and enriching the

storage layer. The DCPMM released by Intel has a single-

device capacity of up to 256GB, and the maximum single-

machine capacity is 8TB (512GB/DIMM * 16DIMMs), mak-

ing it capable of providing a real-time processing system with

high throughput, low latency, and low total cost of ownership

(TCO) for a wide range of applications.

Hash indexes are widely used in-memory indexing struc-

tures for key-value storage systems, such as Memcached and

Redis, because of their constant-level fast lookup performance.

If multiple keys are mapped to the same location (i.e., hash

conflicts), they need to be rehashed or resized if the hash table

is full. With the development of PM, numerous researchers

have been focusing on designing efficient PM-based persis-

tent hash indexes, such as Level hashing [3], CCEH [4],

PCLHT [5], SOFT [6], Clevel [7], and Dash [8].

A positive search looks up an existing element in the

hash table, whereas a negative search looks up a non-existing

element in the hash table. However, the aforementioned PM-

based hash indexes still suffer from poor negative search

performance. Our study on negative search analysis for them

in Section II-C suggests that the negative query throughput of

persistent hash indexes is only 45.1%-79.8% of their positive

query throughput. Negative queries in a PM-based hash index

system result in a large number of PM accesses, which sig-

nificantly degrade system performance, particularly when han-

dling workloads that frequently query non-existing elements,

making it necessary and important to improve negative query

performance. Bloom filter can effectively address the negative-

search problem. Directly reducing negative queries using

PM-based Bloom filters has limitations, including reduced

system performance due to DCPMM-based PMs’ 2-3 times

higher read latency than DRAM [2] and potential damage

to PM durability from extra PM writes. Additionally, while

using a DRAM-based Bloom filter to optimize a PM-based

hash index can avoid the issues introduced by a PM-based

Bloom filter, it faces two challenges: (1) increased scalability

174

2023 IEEE 41st International Conference on Computer Design (ICCD)

2576-6996/23/$31.00 ©2023 IEEE
DOI 10.1109/ICCD58817.2023.00035

overhead for multi-threaded insertion/deletion/positive-search

operations, and (2) data consistency and recovery overhead.

Motivated by the above analysis, we propose SmartHT,

a small-sized DRAM-based Bloom filter to accelerate hash

table operations for persistent memory by reducing negative

searches. SmartHT adopts several techniques to tackle the

two challenges faced by a DRAM-based Bloom filter. It

merges small writes with head insertion to enhance multi-

threaded insertion scalability, adopts a lazy deletion approach

to improve multi-threaded deletion scalability, and shortens the

average chained length of head-bucket to reduce the positive

search path length and improve the positive search scalability.

To guarantee low data consistency overhead, SmartHT min-

imizes costly PM flushes through one 64-byte merged-flush

technique based on 8-byte failure-atomic writes. Experimental

results on Intel Optane DCPMM show that SmartHT out-

performs state-of-the-art persistent hash indexes in terms of

the negative query, achieving 4.61x-13.86x and 2.76x-12.99x

improvements under uniform and skewed workloads generated

by PiBench [9], respectively. Furthermore, SmartHT achieves

high multi-threaded scalability, and low data consistency over-

head, at the modest cost of recovery time.

II. BACKGROUND AND MOTIVATION

A. Persistent Hash Indexes

PM-based persistent hash indexes such as Level hashing [3],

Clevel [7], CCEH [4], Dash [8], PCLHT [5] and SOFT [6],

are cutting-edge data structures that overcome the limitations

of traditional memory hash indexes, including capacity limita-

tions and data loss. Level hashing [3] is a hash table structure

specifically designed for persistent memory that achieves cost-

effective resizing and low-overhead data consistency through

log-free failure atomicity operations. Clevel [7] was developed

as an enhancement to Level hashing by replacing the slot lock

with lock-free concurrency through atomic compare-and-swap

functions, and utilizing a background thread for asynchronous

resizing that does not block reads. CCEH [4] is a PM-based

extendible hashing which utilizes dynamic capacity expansion

through segment splitting without expensive full-table resizing,

but suffers a low load factor. Dash [8] addresses the issue of

frequent segment splitting with balanced insert, replacement,

and stashing techniques to improve load factor at the cost of

more PM reads. PCLHT [5] uses a lock-free mode to enhance

read concurrency and bucket locks for multi-threaded write

concurrency correctness. SOFT [6] is a hash table optimized

for hybrid DRAM and PM usage, utilizing volatile nodes

(VNodes) in DRAM and persistent nodes in PM.

Unlike traditional memory hash indexes, which face con-

straints on size and risk data loss in cases of failure, PM-

based persistent hash indexes offer faster read and write

speeds approaching those of memory-based tables and support

larger data sizes, up to several terabytes. Importantly, they

ensure data persistence, even in the face of system failure,

making them highly reliable for scenarios that require fast and

consistent data storage, such as high-speed caching, real-time

analysis, and high-frequency data access operations.

11.04

14.96 15.3

28.56

14.84

8.36

11.94

6.9

22.54

10.52

CCEH Level Clevel PCLHT SOFT
0

5

10

15

20

25

30

Th
rou

gh
pu

t(M
op

s/s
)

Positive Search
Negative Search

Fig. 1. 32-threaded positive vs negative search throughput for various
persistent hashes with uniform distribution.

B. Bloom Filter

The Bloom filter is a popular and space-efficient probabilis-

tic data structure known for its exceptional negative query

performance [10], [11]. By distinctly identifying the non-

membership of an element in a set, the Bloom filter eliminates

the potential for false negatives. However, it can exhibit false

positives, leading to a requirement for additional confirmation

of an element’s membership after a positive result. The false-

positive rate in a Bloom filter can be diminished by increasing

the number of bits and hash functions. Hence, achieving an

acceptable false-positive rate while maintaining low space and

time overheads is a crucial endeavor when designing a Bloom

filter.
C. Negative Search Analysis

Negative searches in a key-value storage system indicate the

non-existence of the sought-after key-value pair. Such nega-

tive queries are extensively employed in PM-based persistent

hash indexes [3], [12]. Nevertheless, negative searches in a

persistent hash index system result in a considerable number

of PM accesses, causing substantial performance degradation,

mainly when dealing with workloads that frequently query

non-existent elements. As illustrated in Figure 1, experimental

results on Intel Optane DCPMM using popular benchmark

PiBench [9] demonstrate that the negative query throughput of

existing persistent hash indexes ranges from 45.1% to 79.8%

of their positive query throughput.

Since Bloom filters have been shown to significantly reduce

negative queries, introducing them to persistent hash indexes

has the potential to substantially optimize negative query

performance. One straightforward approach is to use a PM-

based Bloom filter, which, however, incurs additional PM

writes, thereby decreasing the lifespan of PM. In addition,

the access latency of DRAM is lower than that of PM.

Previous work [2] shows that the sequential read and random

read latency of DCPMM are 2 and 3 times that of DRAM,

respectively, and the read and write bandwidth of DCPMM is

1/3 and 1/6 of that of DRAM respectively. Based on the above

analysis, a DRAM-based Bloom filter is more conducive to

improving performance compared to a PM-based one.

D. Challenges and Motivation

Although a DRAM-based Bloom filter offers more ad-

vantages than a PM-based Bloom filter, introducing it into

persistent hash indexes still faces the following challenges.

Challenge 1. Scalability overhead in integrating DRAM-
based Bloom filter into persistent hash indexes. Incorporating

175

. . .

. . .

. . .

0 1 N-2 N-1

Head

Bucket

Chained

Bucket

Bloom Filter

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... L-3 L-2 L-1

DRAM

PM

Volatile Filter Layer (VFL)
The VFL can be lazily reconstructed from the consistent PDL when system failures occur.

Persistent Data Layer (PDL)
The PDL needs to ensure multi-threaded lock-based concurrency

correctness and low data consistency overhead in case of system failure.

The initial head bucket length of chained hashing

1 1 1 1 10 0 0 0 0 0 0 0 00 0 000 ...

Fig. 2. The architecture of SmartHT.

a DRAM-based Bloom filter in a persistent hash index that

uses Persistent Memory (PM) can result in scalability overhead

due to increased search costs during positive queries. This

can lead to reduced query efficiency, as finding Bloom filters

during insertion, deletion, and metadata insertion requires

additional steps. Moreover, in a multi-threaded environment,

a DRAM-based Bloom filter in persistent hash indexes can

negatively impact scalability and efficiency in inserts, positive

queries, and deletions.

Challenge 2. Consistency and recovery overhead in in-
tegrating DRAM-based Bloom filter into persistent hash
indexes. Incorporating a DRAM-based Bloom filter as an

optimization strategy for persistent hash indexes can cause

data consistency challenges in case of system failures, as the

Bloom filter metadata in the DRAM may be lost. In such

cases, restoring the Bloom filter metadata and repairing the

filter creates an increased consistency and recovery overhead,

which negatively impacts the data management process.

Since reducing negative search using a PM-based Bloom

filter can decrease the lifespan of PM and increase costly PM

reads, in this paper, we focus on using a DRAM-based Bloom

filter while addressing the challenges it presents.

III. THE DESIGN OF SMARTHT

In this section, we present the design details of SmartHT,

a holistic scheme using a small DRAM-based Bloom filter to

accelerate hash table operations for PM by mitigating negative

searches to the hash table in PM. The design goals of SmartHT

are as follows:

• Reducing Negative Searches. SmartHT should effi-

ciently reduce negative searches.

• High Multi-threaded Scalability. SmartHT should scal-

able to multiple threads.

• Low Data Consistency Overhead. SmartHT should

achieve low data consistency overhead while providing

accurate recovery after a system failure.

A. SmartHT Overview

SmartHT is a persistent hash index optimized by a DRAM-

based Bloom filter that reduces negative searches and has high

multi-threaded scalability and low data consistency overhead.

SmartHT employs a DRAM-based Bloom filter to enhance

negative search performance in Section III-B1. A DCPMM-

aware design allows SmartHT to read only the DRAM-based

Bloom filter during negative searches, which avoids costly

PM accesses to the hash table located in PM. Under lock-

based concurrency control, SmartHT uses efficient merge

small writes with head insertion, lazy deletion, and a shortened

average chained length of head-bucket to achieve high multi-

threaded insertion/deletion/positive-search scalability, respec-

tively. To minimize the data consistency overhead, SmartHT

reduces the costly cacheline flush instructions and extra PM

writes by employing a merged flush in one cacheline-sized

bucket based on an 8-byte failure-atomic write.

Figure 2 shows an overview of the SmartHT architecture

in hybrid DRAM-PM memory. Due to the significant per-

formance differences between DRAM and DCPMM-based

PM, SmartHT leverages the strengths of both memory types

to minimize their respective disadvantages, details in Sec-

tion III-B. SmartHT adopts a cacheline-sized bucket and

traditional chained list to handle hash conflicts and obtain high

space utilization. SmartHT is composed of a Volatile Filter

Layer (VFL) and a Persistent Data Layer (PDL), where VFL

is a volatile Bloom filter in DRAM used for fast negative

searches, and PDL is a persistent chained hashing in PM used

for persistence. After system failures, VFL does not need to

guarantee data consistency because the consistent PDL can

lazily reconstruct it.

B. Hybrid Memory Architecture

1) Volatile Fitler Layer (VFL): SmartHT’s VFL is a

DRAM-based Bloom filter primarily used to reduce nega-

tive searches for a persistent chained hash in PDL, which

can significantly improve the negative search performance

and decrease costly PM accesses (DCPMM-based PM read

latency is 2-3 times that of DRAM [2]). We can calculate

the minimum number of bits required for three hash func-

tions according to the formula for Bloom Filters as follows:

n = −(m ∗ ln(p))/(ln(2))2, where n represents the required

number of bits, m represents the number of key-value entries

stored, and p represents the false positive rate. We set a low

false-positive rate of 0.0001 for the Bloom filter considering

that a false positive can result in significant search overhead.

According to the formula, a Bloom filter that stores 200

million key-value pairs requires at least 288 million bits,

approximately 34.64MB. In practice, additional space can

increase the accuracy rate.

2) Persistent Data Layer (PDL)): SmartHT’s PDL utilizes

a persistent chained hashing method in PM, as depicted in

Figure 2. The hash table of SmartHT in the PDL uses chained

lists to resolve hash conflicts. Therefore, each head bucket may

have multiple chained buckets. SmartHT aims to decrease the

average search path length by utilizing a shortened average

176

Token 0 Token 1 Token 2 KV 0 KV 1 KV 2 Next BP Padding

Key Value

8 Byte 8 Byte

1 Byte 1 Byte 1 Byte 16 Byte 16 Byte 16 Byte 8 Byte 5 Byte

Key-value slot

Fig. 3. The 64-byte bucket structure for head and chained buckets.

chained length of head buckets. Therefore, SmartHT sets the

length N of the head bucket array for the chained hashing

to 224. Each bucket size in PDL is 64 bytes and comprises

three one-byte tokens, three 16-byte key-value slots, one 8-

byte next bucket pointer (BP), and a five-byte padding, as

shown in Figure 3.

SmartHT utilizes a shared-read and exclusive-write mutex

for lock-based concurrency control to achieve multi-threaded

correctness. To reduce the space and operation overhead of

the locks, SmartHT divides chained hashing into many lock

areas with a lock size, or lock stripe, of 256 head buckets,

as depicted in Figure 4. Despite the limitations of a coarse-

grained lock in terms of limiting the concurrency of key

insertion within a single lock area, SmartHT leverages several

optimizations to maintain high scalability for this critical

operation, including merging small writes with head insertion

and shortening the average chained length of the head bucket.

To improve read scalability, SmartHT employs a shared-

lock method, enabling it to achieve both insertion and read

parallelism for different lock areas and read concurrency for

the same lock area.

SmartHT prioritizes data consistency and adopts a two-

stage insertion process. First, key-value entries are inserted

into PM-based chained hashing in PDL, followed by metadata

insertion into the DRAM-based Bloom filter in VFL. To

minimize the overhead incurred by flush instructions, SmartHT

uses a 64-byte bucket to combine small writes into a single

cacheline flush, which employs an 8-byte failure-atomic write

for merged flushing. As a result, SmartHT achieves low data

consistency overhead, which is especially crucial for PM-based

key-value store systems.

While SmartHT only guarantees the data consistency of

PDL in PM, there is a chance of losing metadata in the

Bloom filter of VFL located in DRAM during system failures.

To address this issue, SmartHT recovers the metadata in the

DRAM-based Bloom filter to establish a key’s membership

via SmartHT’s consistent PDL after a system failure. SmartHT

has the capability of lazy recovery, whereby the Bloom filter

can be recovered without compromising any of the actual data

stored in the PDL in case of system failure.

C. SmartHT Operations

1) Insert: The SmartHT solution effectively reduces write

and consistency costs by combining value, key, and its cor-

responding token of the key-value item and then flushing

an entire cache line back to PM. To minimize unnecessary

search paths and costly DCPMM accesses, SmartHT uses

head insertion instead of tail insertion for chained hashing

in PDL, where a head bucket may have long insertion chains.

Algorithm 1: Insert

1 Calculate the hash value (hashVal) and specific head
bucket number (HBN) according to the given key;

2 curr bucket ptr = &Buckets[HBN];

3 if Is Existed in SmartHT(key) then
4 return false;

5 end
6 // Head insert the key-value pair into SmartHT if the

pair does not exist
7 (curr bucket ptr, empty slot num) = Find Empty Slot

(Head Bucket or First Chained Bucket);

8 set unique lock Locks[hashVal/locksize] is true;

9 if curr bucket ptr != NULL and
Is Valid(empty slot num) then

10 curr bucket ptr→slot[empty slot num].value=value;

11 curr bucket ptr→slot[empty slot num].key = key;

12 curr bucket ptr→token[empty slot num] = 1;

13 Use CLFLUSH to persist the bucket to PM;

14 return true;

15 end
16 curr bucket ptr = &Buckets[HBN];

17 tmpBucket ptr = Allocate Bucket From PM();

18 if tmpBucket ptr == NULL then
19 print new temporary bucket failed and return false;

20 end
21 tmpBucket prt→slot[0].value = value;

22 tmpBucket ptr→slot[0].key=key;

23 tmpBucket ptr→token[0]=1;

24 tmpBucket ptr→next =curr bucket ptr→next;

25 Use CLFLUSH to persist the bucket pointed by

tmpBucket ptr to PM;

26 Use memory fence (MFENCE) to Control PM

Persistence Order;

27 curr bucket ptr→next = tmpBucket ptr;

28 Use CLFLUSH to persist the head bucket pointed by

curr bucket ptr to PM;

29 Use MFENCE to Control PM Persistence Order;

30 Insert the key into Bloom filter in VFL;

31 return true;

SmartHT employs an exclusive mutex (i.e., unique lock) for

insert operations. Algorithm 1 outlines the pseudo-code of the

insert operation for SmartHT.

2) Search: SmartHT employs a shared-read lock approach

for reading, with the aim of eliminating the impact of lock

granularity and ensuring read parallelism under the same lock

size. In the event that the Bloom filter in VFL deduces the

nonexistence of a given key, SmartHT returns NONE to avoid

excessive high-latency accesses to DCPMM over DRAM. On

the other hand, if the key exists, a search of the chained

hashing in PDL is needed to verify the existence of the key

to avoid false positives. Consequently, SmartHT leverages a

DRAM-based Bloom filter to accelerate the performance of

negative queries. For positive queries, however, SmartHT still

177

0

.

.

.

255

256

.

.

.

511

.

.

.

256(k-1)

.

.

.

N-1

Head

 Bucket

Chained

 Bucket

Lock 1

Lock size

= 256 Head Buckets

Lock size

= 256 Head Buckets

Lock 2

Lock size

= 256 Head Buckets

Lock k

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

Fig. 4. The shared-read and exclusive-write lock-based concurrency control
and each lock contain 256 64-byte head bucket range.

Algorithm 2: Search

1 if the Bloom filter (BF) contains the key then
2 Calculate hashVal and HBN according to the given

key;

3 bucket ptr = &Buckets[HBN];

4 while bucket ptr != NULL do
5 set shared lock Locks[hashVal/locksize] is true;

6 for i ← 0 to 2 do
7 if bucket ptr→token[i] ==1 and

bucket ptr→slot[i].key == key then
8 return bucket ptr→slot[i].value;

9 end
10 end
11 bucket ptr = bucket ptr→next;

12 end
13 end
14 return NONE;

needs to search the chained hashing of PDL in PM. Algorithm

2 displays the pseudo-code of SmartHT’s search operation.

3) Delete: Similar to the search operation, SmartHT lever-

ages the Bloom filter to optimize the deletion of non-existent

key-value pairs. Moreover, it enhances deletion scalability by

invalidating tokens (i.e., setting them to 0 and persisting them

to PM), thereby implementing lazy deletion. SmartHT makes

sure that parallel deletions are correct by utilizing exclusive

write locks.

D. Recovery

SmartHT may lose the DRAM-based Bloom filter located in

the volatile filter layer (VFL) after regular system shutdowns

or failures. SmartHT can lazily recover the Bloom filter after

a system failure, as all data exist in the hash table located in

the persistent data layer (PDL) after the system failure.

Recovery following a normal system shutdown: When a

system shutdown is regular, the recovery method is relatively

simple. SmartHT initially persists VFL to a reserved position

in PM and sets the valid flag (e.g., nonCrashed) to 1 to

denote a normal shutdown. As all PDL data stored in PM is

consistent, SmartHT can easily recover the small-sized VFL

from the appropriate copy in PM. SmartHT then changes the

nonCrashed flag to 0 upon successful recovery from a normal

shutdown.

Recovery following a system failure: Recovering from

unexpected system failures in SmartHT is more complex than

normal system shutdowns. In such cases, the Bloom filter

of VFL must be rebuilt by traversing through all keys in a

consistent chained hashing of PDL in PM. SmartHT utilizes

a token to indicate the validity of the key-value pair, where a

token’s value of one denotes a valid slot, and any other value

implies an invalid one. SmartHT initializes a DRAM-based

Bloom filter in VFL during the recovery process after a system

failure. It then iteratively scans the key-value pairs in the PM-

based chained hashing and checks their corresponding token

values. When encountering an item with an invalid token,

SmartHT skips it, and for an item with a token’s value of

”1”, SmartHT reinserts it into VFL.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

Hardware Configuration: Our experiment runs on a server

environment equipped with four Optane DCPMMs of 128 GB

each, resulting in a total capacity of 512 GB available in the

App Direct mode. This setup has 128 GB of DRAM and runs

on two Intel Xeon Gold 6240 CPUs. Each CPU has 18 cores,

i.e., 36 hyper threads, and has an L1 cache of 1152 KB, an

L2 cache of 18 MB, and an L3 cache of 24.75 MB. The

server runs on Linux kernel version 5.15.0. We bind all Optane

DCPMMs on one CPU to avoid the impact of NUMA. The

multi-threaded environment utilizes two CPUs to evaluate the

scalability of different PM-based hash indexes.

Implementation: To ensure a fair comparison, we adopted

the evaluation technique proposed by HashEvaluation [12] and

integrated SmartHT into the evaluation platform. We utilized

the modified Level hashing version in HashEvaluation. In this

version, the key and value are each set to 8 bytes, and each

bucket has a size of 64 bytes and accommodates four key-value

pairs. For PM management in SmartHT, CCEH [4], Level

hashing [3], PCLHT [5], and SOFT [6], we leveraged the lib-

vmem library available in PMDK [13]. While Dash [8] adopts

libpmem and libpmemobj from PMDK to create a PM space,

Clevel [7] uses the original implementation of libpmemobj

c++ binding. To optimize performance, we utilized clwb in-

structions for all cacheline flush operations [5], while the hash

function used the high-performance GCC std::Hash Bytes,

which has been commonly used in prior studies [3], [4], [12].

Additionally, we ensured that no duplicate keys existed in any

persistent hash table.

Benchmark Framework: We utilized the PiBench [9]

framework to evaluate various PM-based hash indexes, similar

to HashEvaluation [12]. PiBench offers a wide range of

metrics, such as throughput, latency, and low-level hardware

perspectives utilizing interfaces provided by the Processor

Counter Monitor library [14] to induce general operations like

178

1 8 16 24 32 40 48 56 64
0

5

10

15

20

(a) Insert

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

10

20

30

40

50

(b) Positive Search

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

20

40

60

80

100

120

(c) Negative Search

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

5

10

15

20

25

30

35

40

(d) Delete

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

Fig. 5. Multi-threaded scalability for uniform workloads.

1 8 16 24 32 40 48 56 64
0

10

20

30

40

(a) Insert

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

90

(b) Positive Search

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

20

40

60

80

100

120

140

(c) Negative Search

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

1 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

70

80

90

(d) Delete

Th
ro

ug
hp

ut
(M

op
s/

s)

Number of Threads

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

Fig. 6. Multi-threaded scalability for skewed workloads.

insert, search, and delete. We extended PiBench to evaluate

other metrics, such as load factor and recovery time. PiBench

allows for three random distributions, uniform, zipfian, and

self-similar, during the workload generation phase.

Workloads: For insertion, we directly inserted 200 million

key-value pairs into different persistent hash indexes. For

positive/negative search and deletion, we first initialized 200

million key-value pairs of various hash indexes in the loading

phase and then executed corresponding operations on these

200 million key-value pairs in the running phase to evaluate

performance. We primarily used uniform and skewed distri-

butions in our experiments, similar to previous studies [8],

[9], [12]. The skewed distribution employed the self-similar

distribution with a factor of 0.2 by default, which implies that

20% of the keys accounted for 80% of the accesses. SmartHT,

CCEH, Level hashing, and PCLHT did not support variable-

length keys and values. Therefore, we utilized 8-byte fixed-size

keys and values for all PM-based persistent hash indexes.
B. Multi-threaded Performance

In our multi-threaded performance evaluations, we tested

the scalability of various PM-based persistent hash indexes

Pos. Read Neg. Read Insert. Write Delete. Write
0.0

0.2

0.4

0.6

0.8

1.0

KB
/o

p

(a) Amount of read/write bytes per operation

CCEH
Level
Dash
PCLHT
SOFT
Clevel
SmartHT

Pos. LLC Neg. LLC Delete. LLC Insert. LLC
0

2

4

6

8

10

12

14

N
um

/o
p

(b) Amount of LLC misses per operation

CCEH
Level
Dash
PCLHT
SOFT
Clevel
SmartHT

Fig. 7. Low level performance with processor count monitor describes the
amount of (a) read/write bytes per operation and (b) LLC misses for various
operations under uniform.

under different thread numbers ranging from 4 to 64 for

insert, positive query, negative query, and delete operations

under uniform and skewed distributions. Figure 5 and Figure 6

present the results of these evaluations.

Search. Regarding scalability in positive search opera-

tions, SmartHT outperforms other persistent hash indexes

and achieves high throughput rates of 44.7 Mops/s and 84.7

Mops/s under 64 threads in uniform and skewed distributions,

respectively, as demonstrated in Figure 5(b) and Figure 6(b).

SmartHT’s performance is 1.28x-4.25x and 1.41x-6.34x faster

than other persistent hash indexes due to its shortened average

chained length of the head-bucket to decrease the search path

length.

SmartHT outperforms other indexes in negative query scal-

ability, as Figure 5(c) and Figure 6(c) demonstrate. Under

64 threads, SmartHT achieves negative query throughput

rates of 115.04 Mops/s and 125.98 Mops/s in uniform and

skewed distributions, respectively. Compared to CCEH, Level,

Dash, PCLHT, SOFT, and Clevel, SmartHT’s negative query

performance outperforms them by 4.61x-13.86x and 2.76x-

12.99x, respectively. SmartHT’s superiority in negative query

performance is mainly attributed to the Bloom filter of VFL in

DRAM. This filter enables the prediction of non-membership

of key-value entries without costly access to the chained

hashing of PDL in PM. Figure 7(a) shows that SmartHT can

retrieve 0 amount of data from PM for each negative query,

resulting in the lowest number of LLC misses as illustrated

in Figure 7(b). Other persistent hash indexes, in contrast,

experience lower efficiency when performing negative queries

as they need to traverse long and complete query paths.

Insert. We analyzed the scalability of multi-threaded inser-

tion and presented results in Figure 5(a) and Figure 6(a). SOFT

displayed the highest insertion scalability among all tested

persistent hash indexes due to its efficient lock-free insertion

mechanism that minimizes lock-contention costs and reduces

the need for memory fence (MFENCE) and cacheline flush

(CLFLUSH) operations. This results in a significant reduction

in the amount of data that needs to be written. SmartHT

also showcased impressive insertion scalability by reducing

the number of flushes with merge small writes and utilizing

head insertion to shorten the insertion path. On the other hand,

the less favorable insertion scalability of Level and Clevel

can be attributed to their excessive use of lock-based resizing

operations, leading to frequent data movement and additional

PM writes, which hinders their scalability.

179

Delete. Figures 5(d) and 6(d) present the multi-threaded

scalability results of various persistent hash indexes under uni-

form and skewed distributions, respectively. SmartHT achieved

the best deletion scalability with 36.24 Mops/s and 83.5

Mops/s 64-thread deletion throughput under uniform and

skewed distributions, respectively. Compared to CCEH, Level,

Dash, PCLHT, SOFT, and Clevel, SmartHT outperformed

them by 1.38x-9.79x and 1.85x-14.75x, respectively, because

SmartHT’s superior deletion performance results from efficient

low-overhead deletion operations that utilize lazy deletion

techniques. The lazy deletion mechanism of SmartHT enables

the least amount of data being written during a deletion

operation in all persistent hash indexes, as illustrated in Figure

7(a). SOFT significantly shortens the query path to improve

query efficiency upon node deletion, leading to its second-best

deletion scalability. PCLHT exhibits moderate deletion scala-

bility due to its good positive query efficiency. However, other

persistent hash indexes demonstrate limited deletion scalability

because of their inefficient query or delete performance.

C. Tail Latency

In the context of large-scale storage systems, effectively

managing and reducing tail latency is essential for delivering

optimal user experiences. Figure 8 presents the results of tail

latency performance for the tested persistent hash indexes.

The results in Figure 8(c) demonstrate that SmartHT exhibits

the lowest tail latency in negative queries, with p99.9 and

p99.99 tail latencies of 1.09us and 2.52us, respectively. These

are 4.88x-28.34x and 3.81x-20.33x lower than state-of-the-art

persistent hash indexes. SmartHT’s impressive performance is

achieved by quickly identifying non-existent keys through the

Bloom filter of the VFL located in DRAM, thus avoiding

expensive PM accesses. SmartHT also shows relatively low

tail delays for insertion, achieving a p99.9 insertion tail latency

performance that surpasses other persistent hash indexes by

1.56x-7.30x. This performance is attributed to SmartHT’s

efficient merge writes and head insertion. Figure 8(b) also

indicates that SmartHT exhibits relatively low tail latency

performance in positive queries, showing a p99.9 and p99.99

tail latency that is 2.11x-5.04x better than other persistent hash

indexes. Finally, SmartHT’s deletion tail delay is also low,

as shown in Figure 8(d), with p99.9 and p99.99 deletion tail

latencies that are 1.46x-5.78x and 1.45x-32.84x lower than

other persistent hash indexes, respectively. SmartHT achieves

this excellent deletion performance due to its low deletion-

consistency overhead.
D. Load Factor

The load factor of a hash table is determined by the ratio

of the number of key-value pairs to the total number of

allocated slots in the table. The load factor represents the

space utilization rate, and a higher value indicates better space

utilization. Figure 9 illustrates the maximum load factor for

each persistent hash index. Remarkably, SmartHT exhibits an

exceptionally high load factor of up to 94.1%. In contrast,

SOFT demonstrates a constant load factor of one due to its

demand-based slot allocation mechanism. Compared to other

0% 50% 90% 99% 99.90% 99.99% 99.999%
101

103

105

107

109

Ti
m

e
(n

s)

(a) Insert

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

0% 50% 90% 99% 99.90% 99.99% 99.999%
101

102

103

104

105

106

Ti
m

e
(n

s)

(b) Positive Search

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

0% 50% 90% 99% 99.90% 99.99% 99.999%
101

102

103

104

105

106

Ti
m

e
(n

s)

(c) Negative Search

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

0% 50% 90% 99% 99.90% 99.99% 99.999%
101

102

103

104

105

106

107

Ti
m

e
(n

s)

(d) Delete

CCEH Level Dash
PCLHT SOFT Clevel
SmartHT

Fig. 8. Tail latency at different percentiles under the uniform distribution
with 32 threads.

0.441

0.833 0.862 0.83 0.822

0.941

CCEH Level Dash PCLHT SOFT Clevel SmartHT
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ma
xim

um
 Lo

ad
 F

ac
tor

1.0

Fig. 9. Load factor for various persistent hash indexes.

persistent hash indexes, CCEH has the least space utilization

and its maximum load factor of only 44.1%. The low load

factor of CCEH results from its inherent limitation on probing

up to 16 slots upon hash conflicts, coupled with suboptimal

capacity expansion via segment splitting, leading to many un-

used key-value pair spaces. However, Dash’s balanced insert,

displacement, and stashing techniques allow for an improved

load factor of up to 86.2%. Level, Clevel, and PCLHT demon-

strate much better load factors than CCEH. The reason is that

Level and Clevel rely on two hash functions, enabling them to

detect and manage more slots. In contrast, PCLHT achieves a

higher load factor by resolving hash collisions using chained

hashing.
TABLE I

RECOVERY TIME (SECONDS) FOR SMARTHT WITH DIFFERENT DATA SIZE.

Hash Table 50 Million 100 Million 150 Million 200 Million

SmartHT 23.3 48.7 75.3 102.3

E. Failure Recovery

To evaluate SmartHT’s recovery performance after a system

failure, we inserted datasets ranging from 50 million to 200

million entries into the index and terminated the process. We

then reconstructed the DRAM-based Bloom filter of VFL by

performing a single-threaded read of the PM-based chained

hashing of PDL and recorded the reconstruction time. Table I

presents the recovery time results of SmartHT using different

dataset sizes. The experimental results show that SmartHT’s

180

recovery time exhibits a linear growth pattern as the dataset

size increases. The maximum recovery overhead is 102.3

seconds when reconstructing 200 million key-value pairs.

However, SmartHT’s recovery time overhead is acceptable due

to its capability of lazy recovery.

V. RELATED WORK

PM-based Hash Indexes. PFHT [15] restricts to at most

one cuckoo displacement, resulting in fewer PM writes than

the original cuckoo hashing. Path hashing [16] employs an

inverted binary tree structure and shortens the path to reduce

lookup time. Group hashing [17] and HDNH [18] ensure data

consistency on PM. Group hashing [17] uses an 8-byte failure-

atomic write to guarantee data consistency without duplicate

copies for logging or copy-on-write. Similar to CCEH [4]

and Dash [8], REH [19], HASDH [20], PMEH [21], and OP-

HMEH [22] are variants of extendible hashing on Intel Optane

DC Persistent Memory (DCPMM).

Key-value Stores for Hybrid DRAM-PM Memory.
SPHT [23], Viper [24], and Halo [25], similar to SOFT [6],

store all their indexes in DRAM for high performance but at

the cost of more DRAM space overhead or long recovery time

cost. Flatstore [26] utilizes a DCPMM-based persistent log

structure to build DRAM-assistant write-optimized key-value

stores via batched small writes of the log structure. HiKV [27]

is a hybrid DRAM-PM index, a B+Tree index stored in DRAM

for fast search, and a hash index in PM for persistence.

VI. CONCLUSION

In this paper, we propose SmartHT, a PM-based hash table

accelerated by a small DRAM-based Bloom filter, which can

improve negative query performance and reduce the number

of accesses to PM. SmartHT leverages efficient merge writes

with head insertion, lazy deletion, and a shortened average

chained length of head-bucket to improve the multi-threaded

insertion/deletion/positive-search scalability, respectively. Fur-

thermore, SmartHT uses a merged-flush mechanism based on

an 8-byte failure-atomic write method to achieve low data

consistency overhead. Experimental results on Intel Optane

DCPMM demonstrate that SmartHT significantly outperforms

existing persistent hash indexes.

REFERENCES

[1] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
ACM SIGARH Computer Architecture News, vol. 37, no. 3, pp. 24–33,
2009.

[2] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson, “An
empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST
20). Berkeley, CA, USA: USENIX, 2020, pp. 169–182.

[3] P. Zuo, Y. Hua, and J. Wu, “Write-optimized and high-performance
hashing index scheme for persistent memory,” in OSDI. Berkeley,
CA, USA: USENIX, 2018, pp. 461–476.

[4] M. Nam, H. Cha, Y.-r. Choi, S. H. Noh, and B. Nam, “Write-optimized
dynamic hashing for persistent memory,” in FAST. Berkeley, CA, USA:
USENIX, 2019, pp. 31–44.

[5] S. K. Lee, J. Mohan, S. Kashyap, T. Kim, and V. Chidambaram, “Recipe:
Converting concurrent dram indexes to persistent-memory indexes,”
in Proceedings of the 27th ACM Symposium on Operating Systems
Principles. New York, NY, USA: ACM, 2019, pp. 462–477.

[6] Y. Zuriel, M. Friedman, G. Sheffi, N. Cohen, and E. Petrank, “Efficient
lock-free durable sets,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–26, 2019.

[7] Z. Chen, Y. Hua, B. Ding, and P. Zuo, “Lock-free concurrent level
hashing for persistent memory,” in 2020 USENIX Annual Technical
Conference (USENIX ATC 20). Berkeley, CA, USA: USENIX, 2020,
pp. 799–812.

[8] B. Lu, X. Hao, T. Wang, and E. Lo, “Dash: Scalable hashing on
persistent memory,” Proceedings of the VLDB Endowment, vol. 13, no. 8,
2020.

[9] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm, “Evaluating per-
sistent memory range indexes,” Proceedings of the VLDB Endowment,
vol. 13, no. 4, pp. 574–587, 2019.

[10] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du, “Bloomflash:
Bloom filter on flash-based storage,” in 2011 31st International Confer-
ence on Distributed Computing Systems. Piscataway, NJ, USA: IEEE,
2011, pp. 635–644.

[11] L. Luo, D. Guo, R. T. Ma, O. Rottenstreich, and X. Luo, “Optimizing
bloom filter: Challenges, solutions, and comparisons,” IEEE Communi-
cations Surveys & Tutorials, vol. 21, no. 2, pp. 1912–1949, 2018.

[12] D. Hu, Z. Chen, J. Wu, J. Sun, and H. Chen, “Persistent memory
hash indexes: an experimental evaluation,” Proceedings of the VLDB
Endowment, vol. 14, no. 5, pp. 785–798, 2021.

[13] Intel, “Persistent memory development kit,” https://pmem.io/pmdk/,
2022.

[14] I. C. et al., “Processor counter monitor,” https://github.com/intel/pcm,
2022.

[15] B. Debnath, A. Haghdoost, A. Kadav, M. G. Khatib, and C. Ungureanu,
“Revisiting hash table design for phase change memory,” ACM SIGOPS
Operating Systems Review, vol. 49, no. 2, pp. 18–26, 2016.

[16] P. Zuo and Y. Hua, “A write-friendly hashing scheme for non-volatile
memory systems,” in MSST. Piscataway, NJ, USA: IEEE, 2017, pp.
1–10.

[17] X. Zhang, D. Feng, Y. Hua, J. Chen, and M. Fu, “A write-efficient and
consistent hashing scheme for non-volatile memory,” in ICPP. New
York, NY, USA: ACM, 2018, p. 87.

[18] J. Zhu, K. Huang, X. Zou, C. Huang, N. Xu, and L. Fang, “Hdnh:
a read-efficient and write-optimized hashing scheme for hybrid dram-
nvm memory,” in 50th International Conference on Parallel Processing.
Piscataway, NJ, USA: IEEE, 2021, pp. 1–10.

[19] Z. Li, Z. Tan, and J. Chen, “Reh: redesigning extendible hashing for
commercial non-volatile memory,” in 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE). Piscataway, NJ, USA:
IEEE, 2022, pp. 742–747.

[20] ——, “Hasdh: A hotspot-aware and scalable dynamic hashing for hybrid
dram-nvm memory,” in 2021 IEEE 39th International Conference on
Computer Design (ICCD). IEEE, 2021, pp. 154–161.

[21] J. Hu, J. Chen, Y. Zhu, Q. Yang, Z. Peng, and Y. Yu, “Parallel multi-
split extendible hashing for persistent memory,” in 50th International
Conference on Parallel Processing. New York, NY, USA: ACM, 2021,
pp. 1–10.

[22] X. Zou, F. Wang, D. Feng, J. Zhu, R. Xiao, and N. Su, “A write-optimal
and concurrent persistent dynamic hashing with radix tree assistance,”
Journal of Systems Architecture, vol. 125, p. 102462, 2022.

[23] X. Zou, F. Wang, D. Feng, F. Yang, M. Lei, and C. Liu, “Spht: A
scalable and high-performance hashing scheme for persistent memory,”
Software: Practice and Experience, no. 7, pp. 1679–1697, 2022.

[24] L. Benson, H. Makait, and T. Rabl, “Viper: an efficient hybrid pmem-
dram key-value store,” Proceedings of the VLDB Endowment, vol. 14,
no. 9, pp. 1544–1556, 2021.

[25] D. Hu, Z. Chen, W. Che, J. Sun, and H. Chen, “Halo: A hybrid pmem-
dram persistent hash index with fast recovery,” in Proceedings of the
2022 International Conference on Management of Data. New York,
NY, USA: ACM, 2022, pp. 1049–1063.

[26] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu, “Flatstore: An
efficient log-structured key-value storage engine for persistent memory,”
in Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems.
New York, NY, USA: ACM, 2020, pp. 1077–1091.

[27] F. Xia, D. Jiang, J. Xiong, and N. Sun, “Hikv: A hybrid index key-value
store for dram-nvm memory systems,” in ATC. Berkeley, CA, USA:
USENIX, 2017, pp. 349–362.

181

